: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, but its prognosis remains poor despite significant advances in our understanding of its molecular biology and investigation of numerous treatment modalities. Despite conventional treatment consisting of surgical resection, radiotherapy, and temozolomide marginally prolonging survival, most GBM patients die within 2 years of initial diagnosis. Bevacizumab (Bev) is the best-studied antiangiogenic agent for GBM and currently the only FDA-approved second-line treatment. : Areas covered in this review include the molecular pathways of angiogenesis in glioblastoma, specifically the overexpression of vascular endothelial growth factor (VEGF) and robust formation of tumor neovasculature. In addition, this review covers pharmacological targeting of this process as a longstanding attractive clinical strategy, specifically by Bev. : This review attempts to discuss the history of early studies of antiangiogenic treatment for GBM that eventually failed in subsequent studies and the evolving modern role of Bev in the course of treatment for a variety of indications, including symptom control, reduced glucocorticoid use, and improved quality of life.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543784.2019.1650019DOI Listing

Publication Analysis

Top Keywords

glioblastoma multiforme
8
treatment
5
evolving role
4
role antiangiogenic
4
antiangiogenic therapies
4
therapies glioblastoma
4
multiforme current
4
current clinical
4
clinical significance
4
significance future
4

Similar Publications

Clinical confocal laser endomicroscopy for imaging of autofluorescence signals of human brain tumors and non-tumor brain.

J Cancer Res Clin Oncol

December 2024

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Purpose: Analysis of autofluorescence holds promise for brain tumor delineation and diagnosis. Therefore, we investigated the potential of a commercial confocal laser scanning endomicroscopy (CLE) system for clinical imaging of brain tumors.

Methods: A clinical CLE system with fiber probe and 488 nm laser excitation was used to acquire images of tissue autofluorescence.

View Article and Find Full Text PDF

Endothelial Response to Blood-Brain Barrier Disruption in the Human Brain.

JCI Insight

December 2024

Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America.

Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!