To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease-related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772025 | PMC |
http://dx.doi.org/10.1002/hbm.24711 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Padova Neuroscience Center, University of Padova, Padova 35131, Italy.
Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.
View Article and Find Full Text PDFGigascience
January 2025
Department of Neurology, University of Halle Medical Center, Halle 06102, Germany.
Background: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity.
View Article and Find Full Text PDFCereb Cortex
March 2025
Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
This study investigates the relationship between resting-state functional magnetic resonance imaging (rs-fMRI) topological properties and synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) synaptic density (SD) in late-life depression (LLD). 18 LLD patients and 33 healthy controls underwent rs-fMRI, 3D T1-weighted MRI, and 11C-UCB-J PET scans to assess SD. The rs-fMRI data were utilized to construct weighted networks for calculating four global topological metrics, including clustering coefficient, characteristic path length, global efficiency, and small-worldness, and six nodal metrics, including nodal clustering coefficient, nodal characteristic path length, nodal degree, nodal strength, local efficiency, and betweenness centrality.
View Article and Find Full Text PDFEpileptic Disord
March 2025
Freiburg Epilepsy Center, Member of the ERN EpiCARE, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
A systematic review using PRISMA criteria was used to review the literature regarding the specific semiology of seizure arising (a) from the temporal pole or (b) from both medial and lateral temporal cortex. Evidence was analyzed with regard to information provided by intracranial EEG recordings and surgical outcomes, and an estimation of validity of reported signs and symptoms was performed. Semiology of seizures originating from the temporal pole was mostly related to diverse patterns of ictal spread rather than to the localization of seizure origin and comprised a wide variety of early signs and symptoms.
View Article and Find Full Text PDFInflammopharmacology
March 2025
Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
Alzheimer's disease (AD) is a widespread condition that affects adults and the community considerably. The causes are yet unknown, except from advanced age and genetic predisposition. Natural products provided advantageous advantages for managing AD due to their efficacy, safety, and accessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!