Three novel Avian avulavirus species were discovered and isolated during 2017 from Gentoo penguins (Pygoscelis papua) at Kopaitic island in the Northwestern region of the Antarctic Peninsula. The viruses were officially named as Avian avulavirus 17 (AAV17), Avian avulavirus 18 (AAV18) and Avian avulavirus 19 (AAV19), collectively referred to as penguin avulaviruses (PAVs). To determine whether these viruses are capable of infecting the three species of Pygoscelis spp. penguins (Gentoo, Adelie and Chinstrap) and assess its geographical distribution, serum samples were collected from seven locations across the Antarctic Peninsula and Southern Shetland Islands. The samples were tested by Hemagglutination inhibition assay using reference viruses for AAV17, AAV18 and AAV19. A total of 498 sera were tested, and 40 were positive for antibodies against AAV17, 20 for AAV18 and 45 for AAV19. Positive sera were obtained for the penguin's species for each virus; however, antibodies against AAV18 were not identified in Adelie penguins. Positive penguins were identified in all regions studied. Positive locations include Ardley Island and Cape Shirreff at Livingston Island (Southern Shetland Region); Anvers Island, Doumer Island and Paradise Bay in the Central Western region; and Avian Island at Southwestern region of the Antarctic Peninsula. The lowest occurrence was observed at the Southwestern region at Lagotellerie Island, where all samples were negative. On the other hand, Cape Shirreff and Paradise Bay showed the highest antibody titres. Field samples did not evidence cross-reactivity between viruses, and detection was significantly higher for AAV19 and lower for AAV18. This is the first serologic study on the prevalence of the novel Avian avulaviruses including different locations in the white continent. The results indicate that these novel viruses can infect the three Pygoscelis spp. penguins, which extend across large distances of the Antarctic Peninsula.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628254 | PMC |
http://dx.doi.org/10.1111/tbed.13309 | DOI Listing |
Environ Microbiome
January 2025
Basecamp Research Ltd, Unit 510 Clerkenwell Workshops, 27 Clerkenwell Close, London, EC1R 0AT, UK.
Background: Despite being recognised as a global problem, our understanding of human-mediated antimicrobial resistance (AMR) spread to remote regions of the world is limited. Antarctica, often referred to as "the last great wilderness", is experiencing increasing levels of human visitation through tourism and expansion of national scientific operations. Therefore, it is critical to assess the impact that these itinerant visitors have on the natural environment.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal de Viçosa - UFV, Departmento de Solos, Av. Peter Henry Rolfs, s/nº, Campus Universitário Viçosa, 36570-900 Viçosa, MG, Brazil.
The Byers Peninsula, the largest ice-free area in Maritime Antarctica, is vital for studying landscape-scale natural processes due to its diverse periglacial landforms. This study aim to characterize the soils and environments of its southern sector, focusing on soil-landform-lithology interactions. Thirty-seven soil profiles were classified, collected, and chemically and physically analyzed.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
The region of the Maritime Antarctic suffers significantly from climate change, resulting in regional warming and consequently affecting coverage. This study characterized three surface zones of Collins Glacier and three other zones in ice-free areas on the Fildes Peninsula, which has an area of 29.6 km².
View Article and Find Full Text PDFHeliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFJ Phycol
January 2025
Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA.
Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!