Polyomaviruses, like the BK-polyomavirus (BKPyV), can cause severe pathologies in immunocompromised patients. However, since highly effective antivirals are currently not available, methods measuring the impact of potential antiviral agents are required. Here, a dual fluorescence reporter that allows the analysis of the BKPyV non-coding control-region (NCCR) driven early and late promoter activity was constructed to quantify the impact of potential antiviral drugs on viral gene expression via tdTomato and eGFP expression. In addition, by cloning BKPyV-NCCR amplicons which in this protocol have been exemplarily obtained from the blood-derived DNA of immunocompromised renal transplanted patients, the impact of NCCR-rearrangements on viral gene expression can be determined. Following cloning of the patient derived amplicons, HEK293T cells were transfected with the reporter-plasmids, and treated with potential antiviral agents. Subsequently, cells were subjected to FACS-analysis for measuring mean fluorescence intensities 72 h post transfection. To also test the analysis of drugs that have a potential cell cycle inhibiting effect, only transfected and thus fluorescent cells are used. Since this assay is performed in large T Antigen expressing cells, the impact of early and late expression can be analyzed in a mutually independent manner.

Download full-text PDF

Source
http://dx.doi.org/10.3791/59755DOI Listing

Publication Analysis

Top Keywords

potential antiviral
12
impact potential
8
antiviral agents
8
early late
8
viral gene
8
gene expression
8
measurement bk-polyomavirus
4
bk-polyomavirus non-coding
4
non-coding control
4
control region
4

Similar Publications

Objective: This study aimed to assess the potential antifibrotic impact of zinc sulfate in chronic Hepatitis C Virus (HCV) patients receiving direct-acting antiviral therapy.

Methods: This randomized controlled study included 50 chronic HCV-infected patients with fibrosis stage (F1 & F2). Participants were randomly assigned to two groups: Group 1 (Control group, n = 25) received standard direct-acting antiviral therapy for 3 months, while Group 2 (Zinc group, n = 25) received 50 mg/day of zinc sulfate in addition to the standard direct-acting antiviral therapy for the same duration.

View Article and Find Full Text PDF

Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group).

View Article and Find Full Text PDF

Research progress in deubiquitinase OTUD3.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

School of Economics and Management, Beijing Forestry University, Beijing 100083, China.

OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.

View Article and Find Full Text PDF

SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.

View Article and Find Full Text PDF

Cys44 of SARS-CoV-2 3CL affects its catalytic activity.

Int J Biol Macromol

January 2025

Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:

SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!