The distribution of so-called new psychoactive substances (NPS) as substitute for common drug of abuse was steadily increasing in the last years, but knowledge about their toxicodynamic and toxicokinetic properties is lacking. However, a comprehensive knowledge of their toxicokinetics, particularly their metabolism, is crucial for developing reliable screening procedures and to verify their intake, e.g., in case of intoxications. The aim of this study was therefore to tentatively identify the metabolites of the methylphenidate-derived NPS isopropylphenidate (isopropyl 2-phenyl-2-(2-piperidyl) acetate, IPH), 4-fluoromethylphenidate (methyl 2-(4-fluorophenyl)-2-(piperidin-2-yl) acetate, 4-FMPH) and 3,4-dichloromethylphenidate (methyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl) acetate, 3,4-CTMP) using different in vivo and in vitro techniques and ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS/MS). Urine samples of male rats were analyzed, and the transfer to human metabolism was done by using pooled human S9 fraction (pS9), which contains the microsomal fraction of liver homogenisate as well as its cytosol. UHPLC-HRMS/MS analysis of rat urine revealed 17 metabolites for IPH (14 phase I and 3 phase II metabolites), 13 metabolites were found for 4-FMPH (12 phase I metabolites and 1 phase II metabolite) and 7 phase I metabolites and no phase II metabolites were found for 3,4-CTMP. pS9 incubations additionally indicated that all investigated substances were primarily hydrolyzed, resulting in the corresponding carboxy metabolites. Finally, these carboxy metabolites should be used as additional analytical targets besides the parent compounds for comprehensive mass spectrometry-based screening procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/bkz052 | DOI Listing |
Foods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Public Health, Capital Medical University, Beijing 100069, China.
Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.
View Article and Find Full Text PDFLancet Microbe
December 2024
Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:
Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.
Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.
Food Chem Toxicol
January 2025
INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France; Laboratoire de toxicologie biologique et médico-légale, CHU Rennes, Rennes, France.
Objective: Recently, the pig liver model perfused ex vivo using a normothermic machine perfusion (NMP) has been proposed as a suitable model to study xenobiotic metabolism and biliary excretion. The aim of our study is to describe the metabolism of NPS such as cathinones (with a focus on 4-Cl-PVP and eutylone) in blood and bile, using a normothermic perfused pig liver model.
Methods: Livers (n=4) from male large white pigs, 3 - 4 months of age and weighing approximately 75-80 kg, were harvested and reperfused onto an NMP (LiverAssist®, XVIVO) using autologous whole blood at 38°C.
Cell Rep Med
December 2024
Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Electronic address:
Mitochondrial uncouplers dissipate proton gradients and deplete ATP production from oxidative phosphorylation (OXPHOS). While the growth of prostate cancer depends on OXPHOS-generated ATP, the oncogenic pathway mediated by the transcription factor E2F1 is crucial for the progression of this deadly disease. Here, we report that mitochondrial uncouplers, including tizoxanide (TIZ), the active metabolite of the Food and Drug Administration (FDA)-approved anthelmintic nitazoxanide (NTZ), inhibit E2F1-mediated expression of genes involved in cell cycle progression, DNA synthesis, and lipid synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!