Photocatalysis is considered to be a promising technique for the degradation of organic pollutants. Herein, a 0D/1D composite photocatalyst consisting of Au nanoparticles (NPs) and CuBiO microrods (Au/CBO) was designed and prepared by a simple thermal reduction-precipitation approach. It shows excellent photocatalytic performance in the degradation of tetracycline (TC). The maximum photocatalytic degradation rate constant for Au/CBO composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area, enhancing photoresponse and providing more active sites. Our work shows a possible design of efficient photocatalysts for environmental remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633693PMC
http://dx.doi.org/10.3762/bjnano.10.134DOI Listing

Publication Analysis

Top Keywords

0d/1d composite
8
photocatalytic performance
8
construction 0d/1d
4
composite based
4
based nanoparticles/cubio
4
nanoparticles/cubio microrods
4
microrods efficient
4
efficient visible-light-driven
4
photocatalytic
4
visible-light-driven photocatalytic
4

Similar Publications

The rapid advancement of the Internet of Things has created a substantial demand for portable gas sensors. Nevertheless, the development of gas sensors that can fulfill the demanding criteria of high sensitivity and rapid response time continues to pose a considerable challenge. Herein, an in-situ anchoring strategy is proposed to construct CNTs@MOF heterostructure to establish strong electronic coupling and charge relocation for enhancing the monitoring capabilities of isopropanol (freshness markers for fruits) at room temperature.

View Article and Find Full Text PDF

Current strategies for constructing sparse nanostructures for fabricating superblacks are only suitable for a few light-absorbing materials, severely limiting their applications. Herein, ultra-low reflective silica aerogels with ultra-high light transparency are used as solid smokes to individually or simultaneously suspend at least 100 species of light-absorbing nanoparticles with a volume fraction as low as 0.005%, for creating > 100 superblacks in practice and one billion superblacks in theory if taken permutation and combination among these 0D, 1D, or 2D nanoparticles into account.

View Article and Find Full Text PDF

Background And Purpose: The ligands of the imidazoline and α-adrenergic receptors are mainly imidazoline and guanidine derivatives, known as centrally-acting antihypertensives and compounds with potential use in various neurological disorders. The extent of their ionisation has a major influence on their behaviour in the different analytical systems. The main objective of this work was to compare the mechanism of chromatographic retention and electrophoretic mobility under acidic, neutral and basic conditions.

View Article and Find Full Text PDF

The distinctive properties of 2D MXenes have garnered significant interest across various fields, including wastewater treatment and photo/electro-catalysis. The integration of inexpensive semiconductor nanostructures with 2D MXenes offers a promising strategy for applications such as wastewater treatment and photoelectrochemical hydrogen production. In this study, we employed an in situ hydrothermal method to immobilize 1D BiS nanorods and self-reduced metallic bismuth nanoparticles (Bi NPs) onto TiCT MXene nanosheets, resulting in the formation of a Bi/BiS/TiCT (0/1D/2D) composite catalyst, which demonstrates an outstanding efficacy in both the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and photoelectrochemical hydrogen production.

View Article and Find Full Text PDF

Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals.

Chem Rev

May 2024

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!