Acetylcholinesterase (AChE) is responsible for catalyzing the hydrolysis of the neurotransmitter acetylcholine (ACh) leading to acetate and choline (Ch) release. The inhibition of AChE produces a generalized synaptic collapse that can lead to insect death. Herein we report for the first time the isolation of two AChEs from which were purified by sulphate ammonium precipitation followed by ion exchange chromatography. AsAChE-A and AsAChE-B enzymes have optimum pH of 9.5 and 9.0 and higher activities in 30/50°C and 20°C, respectively, using acetylthiocholine (ATCh) as substrate. Immobilized capillary enzyme reactors (ICERs) were obtained for both enzymes (AsAChE-A-ICER and AsAChE-B-ICER) and their activities were measured by LC-MS/MS through hydrolysis product quantification of the natural substrate ACh. The comparison of activities by LC-MS/MS of both AChEs using ACh as substrate showed that AsAChE-B (free or immobilized) had the highest affinity. The inverse result was observed when the colorimetric assay (Elman method) was used for ATCh as substrate. Moreover, by mass spectrometry and phylogenetic studies, AsAChE-A and AsAChE-B were classified as belonging to AChE-2 and AChE-1 classes, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633970 | PMC |
http://dx.doi.org/10.1155/2019/6139863 | DOI Listing |
Enzyme Res
July 2019
Federal University of São Carlos, Department of Chemistry, São Carlos, SP, Brazil.
Acetylcholinesterase (AChE) is responsible for catalyzing the hydrolysis of the neurotransmitter acetylcholine (ACh) leading to acetate and choline (Ch) release. The inhibition of AChE produces a generalized synaptic collapse that can lead to insect death. Herein we report for the first time the isolation of two AChEs from which were purified by sulphate ammonium precipitation followed by ion exchange chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!