Modeling Top-Down and Bottom-Up Drivers of a Regime Shift in Invasive Aquatic Plant Stable States.

Front Plant Sci

Centre for Biological Control, Department of Botany, Rhodes University, Grahamstown, South Africa.

Published: July 2019

AI Article Synopsis

  • Evidence shows that ecosystems can switch between dominance of floating plants and submerged plants based on interactions with biological control agents and nutrient levels.
  • The study highlights that the shift between these plant types is influenced by herbivory, which affects the decomposition rate of floating plants.
  • Management of invasive species should consider both top-down (biological control) and bottom-up (nutrient status) factors, as changes in one can impact the overall ecosystem dynamics.

Article Abstract

The evidence for alternate stable states characterized by dominance of either floating or submerged plant dominance is well established. Inspired by an existing model and controlled experiments, we conceptually describe a dynamic that we have observed in the field using a simple model, the aim of which was to investigate key interactions of the shift between invasive floating and invasive submerged plant dominance, driven by the rapid decomposition of floating plants as a consequence of herbivory by biological control agents. This study showed that the rate of switch between floating and submerged invasive plant dominance, and the point in time at which the switch occurs, is dependent on the nutrient status of the water and the density of biological control agents on floating plant populations. Therefore, top-down invasive plant biological control efforts using natural enemies can affect systems on a wider scale than the intended agent - plant level, and can be significantly altered by bottom-up changes to the system, i.e., nutrient loading. The implications of this are essential for understanding the multiple roles invasive plants and their control have upon ecosystem dynamics. The results emphasize the importance of multi-trophic considerations for future invasive plant management and offer evidence for new pathways of invasion. The model outputs support the conclusion that, after the shift and in the absence of effective intervention, a submerged invasive stable state will persist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635666PMC
http://dx.doi.org/10.3389/fpls.2019.00889DOI Listing

Publication Analysis

Top Keywords

plant dominance
12
biological control
12
invasive plant
12
invasive
8
shift invasive
8
plant
8
stable states
8
floating submerged
8
submerged plant
8
control agents
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!