Genome engineering by site-specific nucleases enables reverse genetics and targeted editing of genomes in an efficacious manner. Contemporary revolutionized progress in targeted-genome engineering technologies based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-related RNA-guided endonucleases facilitate coherent interrogation of crop genome function. Evolved as an innate component of the adaptive immune response in bacterial and archaeal systems, CRISPR/Cas system is now identified as a versatile molecular tool that ensures specific and targeted genome modification in plants. Applications of this genome redaction tool-kit include somatic genome editing, rectification of genetic disorders or gene therapy, treatment of infectious diseases, generation of animal models, and crop improvement. We review the utilization of these synthetic nucleases as precision, targeted-genome editing platforms with the inherent potential to accentuate basic science "strengths and shortcomings" of gene function, complement plant breeding techniques for crop improvement, and charter a knowledge base for effective use of editing technology for ever-increasing agricultural demands. Furthermore, the emerging importance of Cpf1, Cas9 nickase, C2c2, as well as other innovative candidates that may prove more effective in driving novel applications in crops are also discussed. The mined data has been prepared as a library and opened for public use at www.lipre.org.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632506 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00801 | DOI Listing |
Plant Physiol Biochem
January 2025
College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.
Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFNat Prod Res
January 2025
Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
Antimycins are a class of depsipeptide compounds that exhibit diverse bioactivities. However, their potential clinical applications are hampered by high cell toxicities. Glycosylation usually has profound impacts on the physicochemical properties, bioactivities and toxicities of natural products.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!