During speech perception, listeners rely on multimodal input and make use of both auditory and visual information. When presented with speech, for example syllables, the differences in brain responses to distinct stimuli are not, however, caused merely by the acoustic or visual features of the stimuli. The congruency of the auditory and visual information and the familiarity of a syllable, that is, whether it appears in the listener's native language or not, also modulates brain responses. We investigated how the congruency and familiarity of the presented stimuli affect brain responses to audio-visual (AV) speech in 12 adult Finnish native speakers and 12 adult Chinese native speakers. They watched videos of a Chinese speaker pronouncing syllables (/pa/, /pha/, /ta/, /tha/, /fa/) during a magnetoencephalography (MEG) measurement where only /pa/ and /ta/ were part of Finnish phonology while all the stimuli were part of Chinese phonology. The stimuli were presented in audio-visual (congruent or incongruent), audio only, or visual only conditions. The brain responses were examined in five time-windows: 75-125, 150-200, 200-300, 300-400, and 400-600 ms. We found significant differences for the congruency comparison in the fourth time-window (300-400 ms) in both sensor and source level analysis. Larger responses were observed for the incongruent stimuli than for the congruent stimuli. For the familiarity comparisons no significant differences were found. The results are in line with earlier studies reporting on the modulation of brain responses for audio-visual congruency around 250-500 ms. This suggests a much stronger process for the general detection of a mismatch between predictions based on lip movements and the auditory signal than for the top-down modulation of brain responses based on phonological information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639789PMC
http://dx.doi.org/10.3389/fnhum.2019.00243DOI Listing

Publication Analysis

Top Keywords

brain responses
24
audio-visual speech
8
speech perception
8
auditory visual
8
responses audio-visual
8
native speakers
8
phonology stimuli
8
modulation brain
8
responses
7
stimuli
7

Similar Publications

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery.

View Article and Find Full Text PDF

Determination of the Time-frequency Features for Impulse Components in EEG Signals.

Neuroinformatics

January 2025

Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany.

Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet.

View Article and Find Full Text PDF

Feasibility and effects of cognitive training on cognition and psychosocial function in Huntington's disease: a randomised pilot trial.

J Neurol

January 2025

Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia.

Background: Huntington's disease (HD) is a rare neurodegenerative disease that causes progressive cognitive, physical, and psychiatric symptoms. Computerised cognitive training (CCT) is a novel intervention that aims to improve and maintain cognitive functions through repeated practice. The effects of CCT have yet to be established in HD.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!