Impacts of Coastal Development on the Ecology of Tidal Creek Ecosystems of the US Southeast including Consequences to Humans.

Estuaries Coast

NOAA, Center of Excellence in Oceans and Human Health, Center for Human Health Risk, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, U.S.

Published: January 2015

Upland areas of southeastern U.S. tidal creek watersheds are popular locations for development, and they form part of the estuarine ecosystem characterized by high economic and ecological value. The primary objective of this work was to define the relationships between coastal development, with its concomitant land use changes and associated increases in nonpoint source pollution loading, and the ecological condition of tidal creek ecosystems including related consequences to human populations and coastal communities. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer, 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections) and then watersheds were delineated for each segment. Relationships between coastal development, concomitant land use changes, nonpoint source pollution loading, the ecological condition of tidal creek ecosystems, and the potential impacts to human populations and coastal communities were evaluated. In particular, relationships were identified between the amount of impervious cover (indicator of coastal development) and a range of exposure and response measures including increased chemical contamination of the sediments, increased pathogens in the water, increased nitrate/nitrite levels, increased salinity range, decreased biological productivity of the macrobenthos, alterations to the food web, increased flooding potential, and increased human risk of exposure to pathogens and harmful chemicals. The integrity of tidal creeks, particularly the headwaters or intertidally-dominated sections, were impaired by increases in nonpoint source pollution associated with sprawling urbanization (i.e., increases in impervious cover). This finding suggests these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health and flooding risk from sprawling coastal development. Results also validate the use of a conceptual model with impervious cover thresholds for tidal creek systems in the southeast region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660006PMC
http://dx.doi.org/10.1007/s12237-013-9635-yDOI Listing

Publication Analysis

Top Keywords

tidal creek
24
coastal development
20
creek ecosystems
12
nonpoint source
12
source pollution
12
impervious cover
12
tidal
8
including consequences
8
relationships coastal
8
development concomitant
8

Similar Publications

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Salt marshes are known as key ecosystems for nature-based climate mitigation through organic carbon sequestration into their sediment beds, but at the same time they are affected by accelerating sea level rise induced by climate warming. Consequently, an important question is how organic carbon accumulation rates (OCAR) of salt marshes will respond to future accelerating rates of relative sea level rise (RSLR). To date, existing insights are either based on (1) comparison of geographically distant marsh sites, differing in local RSLR rates but also in other environmental conditions that additionally can affect OCAR, or (2) experiments in given marsh sites, in which proxies for RSLR are manipulated, but run over periods of years instead of decades, the latter being the relevant time scale of marsh responses to RSLR.

View Article and Find Full Text PDF

Peripheral airways dysfunction measured by oscillometry differentiates asthma from inducible laryngeal obstruction.

Respir Med

January 2025

Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA; Mary Parkes Center for Asthma, Allergy & Pulmonary Care, 400 Red Creek Drive, Suite 110, Rochester, NY, 14623, USA. Electronic address:

Background: Inducible laryngeal obstruction (ILO, also called vocal cord dysfunction) can be difficult to distinguish clinically from asthma. Limited studies have explored the use of respiratory oscillometry to detect changes unique to ILO, but more study is needed to determine if routine oscillometry can differentiate these two clinical entities.

Objective: Determine if impedance variables measured on routine oscillometry over tidal breathing vary between individuals with asthma and ILO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!