A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracellular Vesicles Promote Arteriogenesis in Chronically Ischemic Myocardium in the Setting of Metabolic Syndrome. | LitMetric

AI Article Synopsis

  • Ischemic heart disease is a major cause of death, and extracellular vesicles (EVs) may help promote the growth of new blood vessels for better heart blood flow.
  • A study on pigs, after inducing heart issues with a high-fat diet and constricting a heart vessel, revealed that those treated with EVs showed significant improvements in heart function and blood flow compared to the control group.
  • However, adding calpain inhibition did not enhance the benefits of EV treatment, indicating that EVs are most effective on their own in improving heart health amidst chronic ischemia.

Article Abstract

Background Ischemic heart disease continues to be a leading cause of mortality in patients. Extracellular vesicles (EVs) provide a potential for treatment that may induce collateral vessel growth to increase myocardial perfusion. Methods and Results Nineteen male Yorkshire pigs were given a high-fat diet for 4 weeks, then underwent placement of an ameroid constrictor on the left circumflex artery to induce chronic myocardial ischemia. Two weeks later, the pigs received either intramyocardial vehicle (n=6), EVs (high-fat diet with myocardial EV injection [HVM]; n=8), or HVM and calpain inhibition (n=5). Five weeks later, myocardial function, perfusion, coronary vascular density, and cell signaling were examined. Perfusion in the collateral-dependent myocardium was increased during rapid ventricular pacing in the HVM group in both nonischemic (P=0.04) and ischemic areas of the ventricle (P=0.05). Cardiac output and stroke volume were significantly improved in the HVM group compared with the control group during ventricular pacing (P=0.006). Increased arteriolar density was seen in the HVM group in both nonischemic and ischemic myocardium (P=0.003 for both). However, no significant changes in the capillary density were observed between the control, HVM, and HVM and calpain inhibition groups (P=0.07). The group that received EVs with oral calpain inhibition had neither increased vessel density (P>0.99) nor improvement in blood flow or cardiac function (P=0.48) when compared with the control group. Conclusions These findings suggest that EVs promote angiogenesis in areas of chronic myocardial ischemia and improve cardiac function under conditions of diet-induced metabolic syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761642PMC
http://dx.doi.org/10.1161/JAHA.119.012617DOI Listing

Publication Analysis

Top Keywords

calpain inhibition
12
hvm group
12
extracellular vesicles
8
ischemic myocardium
8
metabolic syndrome
8
high-fat diet
8
chronic myocardial
8
myocardial ischemia
8
hvm calpain
8
ventricular pacing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!