Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vanillic acid (VA), one of the phenolic acids metabolized by anthocyanidins, can modulate vascular reactivity by reducing the superoxide. We investigated that VA alleviated fatty acid-induced oxidative stress and clarified its potential mechanisms in human umbilical vein endothelial cells (HUVECs). Our results showed that VA reduced the production of reactive oxygen species and malondialdehyde levels. It also restored mitochondrial membrane potential and enhanced the activities of antioxidant enzymes. In addition, VA promoted the expression of p-Nrf2 and HO-1 through LKB1/AMPK signaling pathway, as well as the level of SIRT1 and PGC-1α. Moreover, compound C reduced the effect of VA on the enhancement of p-Nrf2 and HO-1. These results indicated that AMPK was an important target molecule of VA in the process of alleviating oxidative stress in HUVECs, providing a new potential evidence for vascular protection of anthocyanin in vitro. PRACTICAL APPLICATIONS: As a phenolic derivative and phase II metabolite of anthocyanins in vivo, VA can be found in various edible plants and fruits. This study revealed that VA improved oxidative stress in endothelial cells stimulated by palmitic acid by activating AMPK and its downstream proteins. VA could be a potential functional material for the protection of diabetic vascular complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.12893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!