Milk allergy is known to cause severe allergic reactions in hypersensitive patients, especially in infants and children. β-Lactoglobulin is one of the major allergens in bovine milk. The influence of thermal and microwave processing on the structural deviations of β-lactoglobulin protein have been studied using molecular modeling techniques. The structural deviations are studied using root mean square deviations, radius of gyration, dipole moment, and solvent accessible surface area. STRIDE analysis showed significant changes in the β-lactoglobulin, especially when oscillating electric fields were applied along with heat. Root mean square fluctuations (RMSF) has been assessed for known epitopes in the β-lactoglobulin molecule. This showed that when the protein is exposed to certain thermal stress, it compacts by burying hydrophobic residues in the core. However, few allergic epitope residues also exhibit increased RMSF leading to higher reactive sites on the surface of the protein molecule. PRACTICAL APPLICATIONS: This study showed that molecular modeling can be used to gain valuable insights regarding the structural changes during processing. In the future, with more computational capacity, it can be used to make comparison between results obtained from simulations and real-time experiments. The current techniques used in food industries such as Nuclear Magnetic Resonance Imaging, Fourier Transformation Infrared Spectroscopy, X-ray diffraction can analyze pre- and post-processing effects. Hence, it become necessary to understand the changes that takes place during the processing techniques. Molecular dynamic simulation could be a useful technique in analyzing the changes occurring during the processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.12898 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!