Biological control is one of the strategies to reduce populations of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), the major pest of brassica. Entomopathogen-based biopesticides are recommended and used for its control, reducing the constant use of chemical pesticides. Predators and/or fungal entomopathogens have an increasing interest to be used against diamondback moth, and the compatibility of these control agents in the field is important for pest management. Here we experimentally investigate the effects of diamondback moth larvae treated with a biopesticidal formulation of Beauveria bassiana (Balsamo) Vuillemin in the feeding preference and functional response of the ring-legged earwig. We used untreated and B. bassiana-treated diamondback moth fourth instars (over a 24-h period of exposure) and Euborellia annulipes (Lucas) fifth instars. The nymphs were included in choice condition tests and different larval densities to the analysis of feeding preference and functional responses, respectively. Euborellia annulipes nymphs exhibited no feeding preference under choice conditions but presented different types of functional response: Type II on untreated and type III on fungus-treated diamondback moth larvae. The interaction between E. annulipes and B. bassiana observed in our study contributes to the understanding of the predator-prey-pathogen relationships with implications for P. xylostella integrated management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toz207 | DOI Listing |
Dev Comp Immunol
January 2025
Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea. Electronic address:
Host cabbage possesses an endophyte, Bacillus subtilis, which induced immune-priming of the diamondback moth, Plutella xylostella. In contrast, larvae raised under axenic conditions lost the chance to feed the bacteria and were highly susceptible to various pathogens. Addition of B.
View Article and Find Full Text PDFInsects
December 2024
Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China.
The ongoing interplay among plants, insects, and bacteria underscores the intricate balance of defense mechanisms in ecosystems. Regurgitant bacteria directly/indirectly impact plant immune responses, but the underlying mechanism is unclear. Here, we focus on the interaction between regurgitant bacteria, diamondback moth (DBM), and plant.
View Article and Find Full Text PDFBMC Genomics
January 2025
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Background: The entomopathogenic fungus, Isaria fumosorosea, shows promise as a biological control agent in managing the diamondback moth (DBM) Plutella xylostella, a highly destructive global pest of cruciferous vegetables. To date, the miRNA-mRNA regulatory networks underlying the immune response of DBM to I. fumosorosea infection are still poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China. Electronic address:
The diamondback moth, Plutella xylostella is a notorious pest and has developed serious resistance to insecticides. Entomopathogenic fungi (EPF) have been developed as eco-friendly alternatives to insecticides. Insects rely on their immunity to defend against fungi.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Background: Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms.
Results: Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!