Spectral peculiarity and criticality of a human connectome.

Phys Life Rev

Institute for Information Transmission Problems RAS, 127051 Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia.

Published: December 2019

We have performed the comparative spectral analysis of structural connectomes for various organisms using open-access data. Our results indicate new peculiar features of connectomes of higher organisms. We found that the spectral density of adjacency matrices of human connectome has maximal deviation from the one of randomized network, compared to other organisms. Considering the network evolution induced by the preference of 3-cycles formation, we discovered that for macaque and human connectomes the evolution with the conservation of local clusterization is crucial, while for primitive organisms the conservation of averaged clusterization is sufficient. Investigating for the first time the level spacing distribution of the spectrum of human connectome Laplacian matrix, we explicitly demonstrate that the spectral statistics corresponds to the critical regime, which is hybrid of Wigner-Dyson and Poisson distributions. This observation provides strong support for debated statement of the brain criticality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plrev.2019.07.003DOI Listing

Publication Analysis

Top Keywords

human connectome
12
spectral
4
spectral peculiarity
4
peculiarity criticality
4
human
4
criticality human
4
connectome performed
4
performed comparative
4
comparative spectral
4
spectral analysis
4

Similar Publications

Individual structural covariance connectome reveals aberrant brain developmental trajectories associated with childhood maltreatment.

J Psychiatr Res

December 2024

State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China. Electronic address:

Background: The long-term impact of childhood maltreatment (CM) on an individual's physical and mental health is suggested to be mediated by altered neurodevelopment. However, the exact neurobiological consequences of CM remain unclear.

Methods: The present study aimed to investigate the relationship between CM and brain age based on structural magnetic resonance imaging data from a sample of 214 adults.

View Article and Find Full Text PDF

Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.

Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.

View Article and Find Full Text PDF

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry.

Proc Natl Acad Sci U S A

January 2025

Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.

Article Synopsis
  • A topological principle suggests that the physical structure of the brain (its anatomy) significantly influences its functional dynamics.
  • Researchers found that while local connectivity patterns can explain much of brain function, they overlook the essential role of rare long-range cortical connections, which enhance information processing.
  • By incorporating both local connections and these rare long-range connections into a combined model (EDR+LR), they showed that this approach more effectively captures the complexities of brain activity compared to traditional geometric representations.
View Article and Find Full Text PDF

Background: The accumulation of misfolded tau proteins, an Alzheimer's disease (AD) hallmark, starts decades before the emergence of cognitive decline and clinical diagnosis. Autopsy studies support a predictable progression of tau pathology through large-scale systems. However, less is known about the specific progression patterns.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for patient information, advance planning, and potentially effective intervention and treatment. The integration of machine learning techniques with brain connectome graphs, encompassing both structural and functional brain connectomes, can enhance the accuracy and efficiency of AD diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!