MicroRNAs (miRNAs) broadly regulate gene expression through association with Argonaute (Ago), which also protects miRNAs from degradation. However, miRNA stability is known to vary and is regulated by poorly understood mechanisms. A major emerging process, termed target-directed miRNA degradation (TDMD), employs specialized target RNAs to selectively bind to miRNAs and induce their decay. Here, we report structures of human Ago2 (hAgo2) bound to miRNAs and TDMD-inducing targets. miRNA and target form a bipartite duplex with an unpaired flexible linker. hAgo2 cannot physically accommodate the RNA, causing the duplex to bend at the linker and display the miRNA 3' end for enzymatic attack. Altering 3' end display by changing linker flexibility, changing 3' end complementarity, or mutationally inducing 3' end release impacts TDMD efficiency, leading to production of distinct 3'-miRNA isoforms in cells. Our results uncover the mechanism driving TDMD and reveal 3' end display as a key determinant regulating miRNA activity via 3' remodeling and/or degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754277 | PMC |
http://dx.doi.org/10.1016/j.molcel.2019.06.019 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.
View Article and Find Full Text PDFPLoS One
January 2025
College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
Porcine epidemic diarrhea virus (PEDV) is a significant pathogen affecting swine, causing severe economic losses worldwide. This study explores the regulatory role of miRNA-328-3p to ZO-1 expression and its impact on PEDV proliferation via the PLC-β1-PKC pathway in IPEC-J2 cells. We found that miRNA-328-3p can target ZO-1, influencing its expression and subsequently affecting the integrity of tight junctions in the cells.
View Article and Find Full Text PDFHum Gene Ther
January 2025
Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
Planta
January 2025
ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, Delhi, India.
Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!