Purpose: To assess the feasibility of implementing fully automated computer-aided diagnosis (CAD) for detection of pulmonary nodules on CT pulmonary angiography (CTPA) studies in emergency setting.

Materials And Methods: CTPA of 48 emergency patients was retrospectively reviewed. Fully automated CAD nodule detection was performed at the scanner and results were automatically submitted to PACS. A third-year radiology resident (RAD1) and a cardiothoracic radiologist with 6 years' experience (RAD2) reviewed the scans independently to detect pulmonary nodules in two different sessions 8 weeks apart: session 1, CAD was reviewed first and then all images were reviewed; session 2, CAD was reviewed last after all images were reviewed. Time spent by RAD to evaluate image sets was measured for each case. Fisher's exact test and t test were used.

Results: There were 17 male and 31 female patients with mean ± SD age of 48.7 ± 16.4 years. Using CAD at the beginning was associated with lower average reading time for both readers. However, difference in reading time did not reach statistical significance for RAD1 (RAD1 94.6 s vs. 102.7 s, P > 0.05; RAD2 61.1 s vs. 76.5 s, P < 0.05). Using CAD at the end significantly increased rate of RAD1 and RAD2 nodule detection by 34% (2.52 vs. 2.12 nodule/scan, P < 0.05) and 27% (2.23 vs. 1.81 nodule/scan, P < 0.05), respectively.

Conclusion: Routine utilization of CAD in emergency setting is feasible and can improve detection rate of pulmonary nodules significantly. Different methods of incorporating CAD in detecting pulmonary nodules can improve both the rate of detection and interpretation speed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10140-019-01707-xDOI Listing

Publication Analysis

Top Keywords

fully automated
12
automated computer-aided
8
nodule detection
8
detection pulmonary
8
pulmonary angiography
8
studies emergency
8
pulmonary nodules
8
session cad
8
cad reviewed
8
reviewed images
8

Similar Publications

Background: INTER- and INTRAmuscular fat (IMF) is elevated in high metabolic states and can promote inflammation. While magnetic resonance imaging (MRI) excels in depicting IMF, the lack of reproducible tools prevents the ability to measure change and track intervention success.

Methods: We detail an open-source fully-automated iterative threshold-seeking algorithm (ITSA) for segmenting IMF from T1-weighted MRI of the calf and thigh within three cohorts (CaMos Hamilton (N = 54), AMBERS (N = 280), OAI (N = 105)) selecting adults 45-85 years of age.

View Article and Find Full Text PDF

Exploring spiking neural networks for deep reinforcement learning in robotic tasks.

Sci Rep

December 2024

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", Università di Bologna, 40126, Bologna, Italy.

Spiking Neural Networks (SNNs) stand as the third generation of Artificial Neural Networks (ANNs), mirroring the functionality of the mammalian brain more closely than their predecessors. Their computational units, spiking neurons, characterized by Ordinary Differential Equations (ODEs), allow for dynamic system representation, with spikes serving as the medium for asynchronous communication among neurons. Due to their inherent ability to capture input dynamics, SNNs hold great promise for deep networks in Reinforcement Learning (RL) tasks.

View Article and Find Full Text PDF

Solid phase extraction chromatography-based radiochemical isolation of cyclotron-produced Mn from enriched Fe targets.

Nucl Med Biol

December 2024

University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America; University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America. Electronic address:

We report DGA extraction chromatography isolation of Mn from isotopically enriched Fe. The method has been studied in semi-automated and automated realizations. The former achieves a decay corrected radiochemical yield of 78 ± 1 % (n = 3) and a separation factor of (1.

View Article and Find Full Text PDF

Automated identification of impact spatters and fly spots with a residual neural network.

Forensic Sci Int

December 2024

Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China; Chongqing Institutions of Higher Education Municipal Key Criminal Technology Laboratory, Chongqing, China; Intelligent Research Center of Difficult Homicide Cases Investigation, Southwest University of Political Science and Law, Chongqing, China. Electronic address:

In criminal investigations, distinguishing between impact spatters and fly spots presents a challenge due to their morphological similarities. Traditional methods of bloodstain pattern analysis (BPA) rely significantly on the expertise of professional examiners, which can result in limitations including low identification efficiency, high misjudgment rates, and susceptibility to external disturbances. To enhance the accuracy and scientific rigor of identifying impact spatters and fly spots, this study employed artificial intelligence techniques in image recognition and transfer learning.

View Article and Find Full Text PDF

Deep Learning-Based Diagnosis Algorithm for Alzheimer's Disease.

J Imaging

December 2024

College of Electrical and Information, Northeast Agricultural University, 600 Changjiang Road, Harbin 150038, China.

Alzheimer's disease (AD), a degenerative condition affecting the central nervous system, has witnessed a notable rise in prevalence along with the increasing aging population. In recent years, the integration of cutting-edge medical imaging technologies with forefront theories in artificial intelligence has dramatically enhanced the efficiency of identifying and diagnosing brain diseases such as AD. This paper presents an innovative two-stage automatic auxiliary diagnosis algorithm for AD, based on an improved 3D DenseNet segmentation model and an improved MobileNetV3 classification model applied to brain MR images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!