We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highly variable in both anatomy and geometry, and thus very difficult to depict. Second, the neoplasms often vary a lot in its size, shape, as well as its location within the organ. Third, the targets (organs and neoplasms) can be considerably small compared to the human body, and so standard deep networks for segmentation are often less sensitive to these targets and thus predict less accurately especially around their boundaries. In this paper, we present an end-to-end framework named recurrent saliency transformation network (RSTN) for segmenting tiny and/or variable targets. The RSTN is a coarse-to-fine approach that uses prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. A saliency transformation module is inserted between these two stages so that 1) the coarse-scaled segmentation mask can be transferred as spatial weights and applied to the fine stage and 2) the gradients can be back-propagated from the loss layer to the entire network so that the two stages are optimized in a joint manner. In the testing stage, we perform segmentation iteratively to improve accuracy. In this extended journal paper, we allow a gradual optimization to improve the stability of the RSTN, and introduce a hierarchical version named H-RSTN to segment tiny and variable neoplasms such as pancreatic cysts. Experiments are performed on several CT datasets including a public pancreas segmentation dataset, our own multi-organ dataset, and a cystic pancreas dataset. In all these cases, the RSTN outperforms the baseline (a stage-wise coarse-to-fine approach) significantly. Confirmed by the radiologists in our team, these promising segmentation results can help early diagnosis of pancreatic cancer. The code and pre-trained models of our project were made available at https://github.com/198808xc/OrganSegRSTN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2019.2930679DOI Listing

Publication Analysis

Top Keywords

saliency transformation
12
recurrent saliency
8
transformation network
8
abdominal scans
8
neoplasms pancreatic
8
coarse-to-fine approach
8
fine stage
8
segmentation
6
tiny
4
network tiny
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!