Introduction: Syndesmotic injury alters joint mechanics, which may fail to be restored unless an anatomic reduction is obtained.

Methods: A minimally invasive method of measuring joint forces was utilized that does not require significant dissection or intraarticular placement of sensory instruments. Steinmann pins were placed in the tibia and talus of eight fresh-frozen human cadaveric lower extremities and a baseline joint reaction force was determined. A syndesmotic injury was created and reduction (anatomic and anterior malreduction) performed with one or two quadricortical screws and joint reaction forces were measured after the injury and subsequent repairs.

Findings: Baseline mean tibiotalar joint reaction force was 31.4 (SD 7.3 N) and syndesmotic injury resulted in a 35% decrease (mean 20.3, SD 8.4 N, p < 0.01). Fixation of the injury using one or two syndesmotic screws resulted in significant increase compared to the injury state (mean 28.7, SD3.9 N, and mean 28.3, SD 6.4 N, p < 0.05), however there was no significant difference between the two methods of fixation. Malreduction of the fibula also increased joint reaction force compared to the injury state (mean 31.5, SD 5.2 N, p < 0.01), however a significant difference was not detected between malreduction and anatomic reduction.

Interpretation: The present study demonstrates that syndesmotic injury decreases joint reaction force within the tibiotalar joint, suggesting ankle joint instability. Tibiotalar force was restored with anatomic reduction with either a 1 or 2 quadricortical syndesmotic screws. Furthermore, anterior malreduction restored joint reaction force to levels similar to those observed at baseline and with anatomic reduction.

Level Of Evidence: Level V: biomechanical/cadaver study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2019.07.013DOI Listing

Publication Analysis

Top Keywords

joint reaction
16
syndesmotic injury
16
reaction force
12
tibiotalar joint
8
joint
6
syndesmotic
5
injury
5
alterations tibiotalar
4
reaction
4
force syndesmotic
4

Similar Publications

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

A Cu-promoted highly chemoselective dimerization of 5-aminopyrazoles to produce pyrazole-fused pyridazines and pyrazines is reported. The protocol generates switchable products via the direct coupling of C-H/N-H, C-H/C-H and N-H/N-H bonds, with the merits of broad substrate scope and high functional group compatibility. Gram-scale experiments demonstrated the potential applications of this reaction.

View Article and Find Full Text PDF

Maximizing H Production from a Combination of Catalytic Partial Oxidation of CH and Water Gas Shift Reaction.

Molecules

January 2025

The Joint Graduate School of Energy and Environment, CHE Center for Energy Technology and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.

A single-bed and dual-bed catalyst system was studied to maximize H production from the combination of partial oxidation of CH and water gas shift reaction. In addition, the different types of catalysts, including Ni, Cu, Ni-Re, and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400-650 °C). Over Ni-based catalysts, methane can easily dissociate on a Ni surface to give hydrogen and carbon species.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!