The relevance of alpha phase in human perception.

Cortex

Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain. Electronic address:

Published: November 2019

Neural oscillations in the low frequencies, roughly in the alpha band (α, 5-15 Hz), have been suggested to act as a gateway from sensation to perception. This hypothesis assumes discrete perception. In particular, the amplitude and the phase of the low frequency rhythm entails a cortical mechanism which paces the access of sensory information into the cognitive system. Evidence supporting this idea includes correlations between the phase of neural oscillations and behavioral performance in perception, spatial attention and working memory. Despite a widespread confidence in the theory, these findings have been mostly based on a varied range of exploratory approaches and inferential group statistics. Here, we aimed at validating the involvement of low frequency cortical rhythm in perception and at providing a clear-cut EEG analysis pipeline. Such an analytical pipeline should support the adoption of a hypothesis-driven framework for future replications and applications. The design, the analyses and the statistical power of the present experiment were based on prior studies in which phase opposition was successfully found. However, our results provide evidence for the involvement of pre-stimulus oscillatory alpha amplitude but not phase in perception. We discuss the null findings from the present study within the existing literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2019.05.012DOI Listing

Publication Analysis

Top Keywords

neural oscillations
8
amplitude phase
8
low frequency
8
perception
6
phase
5
relevance alpha
4
alpha phase
4
phase human
4
human perception
4
perception neural
4

Similar Publications

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers.

J Clin Med

January 2025

Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.

Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.

View Article and Find Full Text PDF

Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time-frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time-frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics.

View Article and Find Full Text PDF

In this paper, we introduce the concept of (ω,c)-asymptotic periodicity within the context of translation-invariant time scales. This concept generalizes various types of function, including asymptotically periodic, asymptotically antiperiodic, asymptotically Bloch periodic, and certain unbounded functions on time scales. We investigate some fundamental properties of this class of functions and apply our findings to cellular neural network (CNN) dynamic equations with leakage and mixed time-varying delays.

View Article and Find Full Text PDF

Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!