Monitoring cell viability and proliferation in real-time provides a more comprehensive picture of the changes cells undergo during their lifecycle than can be achieved using traditional end-point assays. Particularly for drug screening applications, high-temporal resolution cell viability data could inform decisions on drug application protocols that might lead to better treatment outcomes. We describe a CMOS biosensor that monitors cell viability through high-resolution capacitance measurements of cell adhesion quality. The system consists of a 3 × 3 mm chip with an array of 16 sensors, on-chip digitization, and serial data output that can be interfaced with inexpensive off-the-shelf components. An imaging system was developed to provide ground-truth data of cell coverage concurrently with data recordings. Results showed the sensor's ability to detect single-cell binding events, track cell morphology changes, and monitor cell motility. A chemotherapeutic assay was conducted to examine dose-dependent cytotoxic effects on drug-resistant and drug-sensitive cancer cell lines. Concentrations higher than 5 μM elicited cytotoxic effects on both cell lines, while a dose of 1 μM allowed discrimination of the two cell types. The system demonstrates the use of real-time capacitance measurements as a proof-of-concept tool that has potential to hasten the drug development process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111501 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Front Biosci (Landmark Ed)
December 2024
Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.
Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.
Methods: EP samples were collected from patients with and without endometriosis.
Front Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China.
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!