The role of 3D printing in the biomedical field is growing. In this context, photocrosslink-based 3D printing procedures for resorbable polymers stand out. Despite much work, more studies are needed on photocuring stereochemistry, new resin additives, new polymers and resin components. As part of these studies it is vital to present the logic used to optimize the amount of each resin constituent and how that effects printing process parameters. The present manuscript aims to analyze the effects of poly(propylene fumarate) (PPF) resin components and their effect on 3D printing process parameters. Diethyl fumarate (DEF), bisacylphosphine oxide (BAPO), Irgacure 784, 2-hydroxy-4-methoxybenzophenone (HMB) and, for the first time, in biomedical 3D printing, ethyl acetate (EA), were the resin components under investigation in this study. Regarding printing process parameters, Exposure Time, Voxel Depth, and Overcuring Depth were the parameters studied. Taguchi Design of Experiments was used to search for the effect of varying these resin constituent concentrations and 3D printing parameters on the curing behavior of 3D printable PPF resins. Our results indicate that resins with higher polymer cross-link density, especially those with a higher content of PPF, are able to be printed at higher voxel depth and with greater success (i.e., high yield). High voxel depth, as long as it does not sacrifice required resolution, is desirable as it speeds printing. Nevertheless, the overall process is governed by the correct setup of the voxel depth in relation to overcuring depth. In regards to resin biocompatibility, it was observed that EA is more effective than DEF, the material we had previously relied on. Our preliminary in vitro cytotoxicity tests indicate that the use of EA does not reduce scaffold biocompatibility as measured by standard cytotoxicity testing (i.e., ISO 10993-5). We demonstrate a workpath for resin constituent concentration optimization through thin film tests and photocrosslinkable process optimization. STATEMENT OF SIGNIFICANCE: We report here the results of a study of photo-crosslinkable polymer resin component optimization for the 3D printing of resorbable poly(propylene fumarate) (PPF) scaffolds. Resin additives are initially optimized for PPF thin film printing. Once those parameters have been optimized the 3D printing process parameters for PPF objects with complex, porous shapes can be optimized. The design of experiments to optimize both polymer thin films and complex porous resorbable polymer scaffolds is important as a guess and check, or in some cases a systematic method, are very likely to be too time consuming to accomplish. Previously unstudied resin components and process parameters are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.07.045DOI Listing

Publication Analysis

Top Keywords

printing process
24
process parameters
24
resin components
20
voxel depth
16
resin
12
printing
12
resin constituent
12
parameters
9
components printing
8
process
8

Similar Publications

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

Digital light processing printing of non-modified protein-only compositions.

Mater Today Bio

February 2025

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.

View Article and Find Full Text PDF

Ultraelastic Lead Halide Perovskite Films via Direct Laser Patterning.

ACS Nano

January 2025

College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China.

The precise patterning of elastic semiconductors holds encouraging prospects for unlocking functionalities and broadening the scope of optoelectronic applications. Here, perovskite films with notable elasticity capable of stretching over 250% are successfully fabricated by using a continuous-wave (CW) laser-patterning technique. Under CW laser irradiation, perovskite nanoparticles (NPs) undergo meticulous crystallization within the thermoplastic polyurethane (TPU) matrix, which yields the capability of an unparalleled stretch behavior.

View Article and Find Full Text PDF

4D-printed programmable sample-/eluent-actuated solid-phase extraction device for trace metal analysis.

Anal Chim Acta

January 2025

Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan, ROC. Electronic address:

Background: To integrate valves, manifolds, and solid-phase extraction (SPE) columns into a compact device is technically difficult. Four-dimensional printing (4DP) technologies, employing stimuli-responsive materials in three-dimensional printing (3DP), are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices that can show time-dependent shape programming to enable more complex geometric designs and functions. However, 4D-printed stimuli-responsive actuators and valves utilized to control flowing streams in SPE applications remain rare.

View Article and Find Full Text PDF

Machine learning (ML) has emerged as a transformative tool in various industries, driving advancements in key tasks like classification, regression, and clustering. In the field of chemical engineering, particularly in the creation of biomedical devices, personalization is essential for ensuring successful patient recovery and rehabilitation. Polylactic acid (PLA) is a material with promising potential for applications like tissue engineering, orthopedic implants, drug delivery systems, and cardiovascular stents due to its biocompatibility and biodegradability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!