The song control system in the brain of songbirds is important for the production and acquisition of song and exhibits some of the largest neural sex differences observed in vertebrates. The robust nucleus of the arcopallium (RA) is a premotor nucleus, playing a key role in controlling singing. RA projection neurons (PNs) receives denser synapse inputs including excitatory in males than in females. However, the inhibitory synaptic transmission in the RA has not been reported. In the present study, using whole-cell voltage-clamp recording, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of the males and females were recorded. The average frequency and amplitude of sIPSCs/mIPSCs in males were higher than females. These results demonstrate the sexually dimorphic of the inhibitory synaptic transmission in the RA PNs and the RA PNs in males receive more inhibitory synaptic transmission. These findings contribute to further illuminate the neural mechanisms under the sexually dimorphism song production of adult zebra finches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2019.134377DOI Listing

Publication Analysis

Top Keywords

inhibitory synaptic
16
synaptic transmission
16
projection neurons
8
males females
8
inhibitory postsynaptic
8
postsynaptic currents
8
inhibitory
6
sexual dimorphism
4
dimorphism inhibitory
4
synaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!