Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells.

Cell Syst

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: August 2019

Cells with complex aneuploidies display a wide range of phenotypic abnormalities. However, the molecular basis for this has been mainly studied in trisomic (2n + 1) and disomic (n + 1) cells. To determine how karyotype affects proliferation in cells with complex aneuploidies, we generated 92 2n + x yeast strains in which each diploid cell has between 3 and 12 extra chromosomes. Genome-wide and, for individual protein complexes, proliferation defects are caused by the presence of protein complexes in which all subunits are balanced at the 3-copy level. Proteomics revealed that over 50% of 3-copy members of imbalanced complexes were expressed at only 2n protein levels, whereas members of complexes in which all subunits are stoichiometrically balanced at 3 copies per cell had 3n protein levels. We validated this finding using orthogonal datasets from yeast and from human cancers. Taken together, our study provides an explanation of how aneuploidy affects phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cels.2019.06.007DOI Listing

Publication Analysis

Top Keywords

protein complexes
12
cells complex
8
complex aneuploidies
8
complexes subunits
8
protein levels
8
protein
5
complexes
5
overdosage balanced
4
balanced protein
4
complexes reduces
4

Similar Publications

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

Tissue growth as a mechanism for collagen fiber alignment in articular cartilage.

Sci Rep

December 2024

Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, Eindhoven, 5600 MB, The Netherlands.

Articular cartilage is distinguished by the unique alignment of type II collagen, a feature crucial for its mechanical properties and function. This characteristic organization is established during postnatal development of the tissue, yet the underlying mechanisms remain poorly understood. In this study, a potential mechanism for type II collagen alignment by cartilage-specific growth from within the tissue was investigated.

View Article and Find Full Text PDF

Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!