AI Article Synopsis

  • * This study introduces a new microfluidics technique for encapsulating amphiphilic nanomicelles within sodium alginate spheroids, demonstrating improved cytotoxicity against triple-negative breast cancer cells and a sustained drug release.
  • * The research also examined the hydrodynamics of the microchip, focusing on flow rates and dimensionless numbers, confirming the efficient encapsulation of nanomicelles in the alginate shell, which may advance the production of anticancer drug delivery systems.

Article Abstract

Spheroidal microparticles versatility as a drug carrier makes it a real workhorse in drug delivery applications. Despite of their long history, few research publications emphasize on how to improve their potential targeting ability, production rate, and dissolution characteristics. The current research presents an example of the combined state of the art of nano- and microparticles development technologies. Here in a novel on-chip, microfluidics approach is developed for encapsulating amphiphilic nanomicelles-in-sodium alginate spheroid. The designed nano-in-micro drug delivery system revealed a superior cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231), besides, a more sustained release of the drug. Hydrodynamics of the designed microchip was also investigated as a function of different flow rates with an insight on the dimensionless numbers; capillary number and Weber number throughout the microchannels. Our study confirmed the efficient encapsulation of nanomicelles within the alginate shell. The current microfluidics approach can be efficiently applied for uniform production of nano-in-microparticles with potential anticancer capability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2019.07.015DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
amphiphilic nanomicelles-in-sodium
8
nanomicelles-in-sodium alginate
8
triple-negative human
8
human breast
8
breast cancer
8
delivery applications
8
microfluidics approach
8
drug
5
on-chip preparation
4

Similar Publications

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies.

View Article and Find Full Text PDF

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

Gene therapy targeting ischemic heart disease is a promising therapeutic avenue, but it is mostly restricted to viral-based delivery approaches which are limited due to off-target immunological responses. Focused ultrasound presents a non-viral, image-guided technique in which circulating intravascular microbubble contrast agents can reversibly enhance vascular permeability and gene penetration. Here, we explore the influence of flow rate on the microbubble-assisted delivery of miR-126, a potent pro-angiogenic biologic, using a custom acoustically coupled pressurized mesenteric artery model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!