Protein dynamics and conformational changes explored by hydrogen/deuterium exchange mass spectrometry.

Curr Opin Struct Biol

The Scripps Research Institute, Department of Molecular Medicine, Jupiter, FL 33458, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA. Electronic address:

Published: October 2019

AI Article Synopsis

  • Proteins are flexible and dynamic rather than rigid, making it important to study their behavior in physiological conditions.* -
  • The technique of hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) is introduced as a valuable method to explore protein dynamics, with case studies involving nuclear and innate immunity receptors.* -
  • Recent advancements in software are improving data analysis and visualization of HDX-MS results, enhancing our understanding of protein structure and function.*

Article Abstract

Proteins are not rigid bodies under their physiological conditions. Here we discuss a solution-phase structural proteomics technique, hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS), as a means to study protein dynamics, which can complement other structural approaches. We outline the background theory and highlight the utility of HDX-MS measurements in two case studies involving a nuclear receptor and an innate immunity receptor. We also discuss emerging software advances for improving data analysis and three-dimensional visualization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2019.06.007DOI Listing

Publication Analysis

Top Keywords

protein dynamics
8
mass spectrometry
8
dynamics conformational
4
conformational changes
4
changes explored
4
explored hydrogen/deuterium
4
hydrogen/deuterium exchange
4
exchange mass
4
spectrometry proteins
4
proteins rigid
4

Similar Publications

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Tubulin detyrosination shapes cytoskeletal architecture and virulence.

Proc Natl Acad Sci U S A

January 2025

Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.

Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!