AI Article Synopsis

  • Acid whey from soft cheese production poses a disposal challenge for the dairy industry due to its high ash content, low pH, and high organic acid levels.
  • The study aimed to recover whey protein from cottage cheese acid whey to create a protein concentrate for use in yogurt production.
  • The resulting fat-free yogurt with acid whey protein had similar flavor attributes to those made with sweet whey, but it exhibited lower gel strength and less consumer preference, primarily due to differences in pH affecting the texture.

Article Abstract

Acid whey resulting from the production of soft cheeses is a disposal problem for the dairy industry. Few uses have been found for acid whey because of its high ash content, low pH, and high organic acid content. The objective of this study was to explore the potential of recovery of whey protein from cottage cheese acid whey for use in yogurt. Cottage cheese acid whey and Cheddar cheese whey were produced from standard cottage cheese and Cheddar cheese-making procedures, respectively. The whey was separated and pasteurized by high temperature, short time pasteurization and stored at 4°C. Food-grade ammonium hydroxide was used to neutralize the acid whey to a pH of 6.4. The whey was heated to 50°C and concentrated using ultrafiltration and diafiltration with 11 polyethersulfone cartridge membrane filters (10,000-kDa cutoff) to 25% total solids and 80% protein. Skim milk was concentrated to 6% total protein. Nonfat, unflavored set-style yogurts (6.0 ± 0.1% protein, 15 ± 1.0% solids) were made from skim milk with added acid whey protein concentrate, skim milk with added sweet whey protein concentrate, or skim milk concentrate. Yogurt mixes were standardized to lactose and fat of 6.50% and 0.10%, respectively. Yogurt was fermented at 43°C to pH 4.6 and stored at 4°C. The experiment was replicated in triplicate. Titratable acidity, pH, whey separation, color, and gel strength were measured weekly in yogurts through 8 wk. Trained panel profiling was conducted on 0, 14, 28, and 56 d. Fat-free yogurts produced with added neutralized fresh liquid acid whey protein concentrate had flavor attributes similar those with added fresh liquid sweet whey protein but had lower gel strength attributes, which translated to differences in trained panel texture attributes and lower consumer liking scores for fat-free yogurt made with added acid whey protein ingredient. Difference in pH was the main contributor to texture differences, as higher pH in acid whey protein yogurts changed gel structure formation and water-holding capacity of the yogurt gel. In a second part of the study, the yogurt mix was reformulated to address texture differences. The reformulated yogurt mix at 2% milkfat and using a lower level of sweet and acid whey ingredient performed at parity with control yogurts in consumer sensory trials. Fresh liquid acid whey protein concentrates from cottage cheese manufacture can be used as a liquid protein ingredient source for manufacture of yogurt in the same factory.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2019-16247DOI Listing

Publication Analysis

Top Keywords

acid whey
48
whey protein
36
whey
18
protein concentrate
16
cottage cheese
16
skim milk
16
acid
13
protein
13
fresh liquid
12
yogurt
9

Similar Publications

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Effect of Fortification with High-Milk-Protein Preparations on Yogurt Quality.

Foods

January 2025

Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland.

Protein-enriched yogurts have become increasingly popular among consumers seeking to boost their daily protein intake. The incorporation of milk proteins and protein preparations in yogurt production not only enhances nutritional value but also improves texture, viscosity, and overall sensory properties-key factors that influence consumer acceptance. The main objective of this study was to evaluate the influence of casein and whey protein preparations on the physicochemical properties, viability of lactic acid bacteria, and sensory attributes of yogurts.

View Article and Find Full Text PDF

The flavor of dairy products crucially affects consumer purchase preference. Although the flavor and sensory perception of milk can be influenced by heat treatment during processing, the exact mechanism remains unclear. Therefore, this study analyzed the whey protein content and structural changes of milk heated at different time and temperature combinations and evaluated the flavor compounds and sensory characteristics of milk.

View Article and Find Full Text PDF

Whey proteins have anti-fatigue activity, but there are few studies that have reported the ameliorative effects of branched-chain amino acid (BCAA) oligopeptides from whey proteins on fatigue in mice. The purposes of this study were to establish a process for the preparation of BCAA oligopeptides from whey protein and to investigate the anti-fatigue activity of BCAA oligopeptides. Whey proteins were hydrolyzed by trypsin and flavourzyme and purified by ethanol precipitation and reversed-phase high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Whey protein phospholipid concentrate (WPPC) is a co-product generated during the manufacture of whey protein isolate. WPPC is depleted of simple sugars but contains numerous glycoconjugates embedded in the milk fat globule membrane, suggesting this fraction may serve as a carbon source for growth of bifidobacteria commonly enriched in breast fed infants. In this work, we demonstrate that WPPC can serve as a sole carbon source for the growth of Bifidobacterium bifidum, a species common to the breastfed infant and routinely used as a probiotic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!