Study of the antitumor mechanisms of apiole derivatives (AP-02) from Petroselinum crispum through induction of G0/G1 phase cell cycle arrest in human COLO 205 cancer cells.

BMC Complement Altern Med

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan, Republic of China.

Published: July 2019

Background: Apiole was isolated from the leaves of various plants and vegetables and has been demonstrated to inhibit human colon cancer cell (COLO 205 cells) growth through induction of G0/G1 cell cycle arrest and apoptotic cell death. This study further explored the antitumor effects of apiole derivatives AP-02, 04, and 05 in COLO 205 cancer cells.

Methods: Human breast (MDA-MB-231, ZR75), lung (A549, PE089), colon (COLO 205, HT 29), and hepatocellular (Hep G2, Hep 3B) cancer cells were treated with apiole and its derivatives in a dose-dependent manner. Flow cytometry analysis was subsequently performed to determine the mechanism of AP-02-induced G0/G1 cell cycle arrest. The in vivo antitumor effect of AP-02 (1 and 5 mg/kg, administered twice per week) was examined by treating athymic nude mice bearing COLO 205 tumor xenografts. The molecular mechanisms of AP-02-induced antitumor effects were determined using western blot analysis.

Results: AP-02 was the most effective compound, especially for inhibition of COLO 205 colon cancer cell growth. The cytotoxicity of AP-02 in normal colon epithelial (FHC) cells was significantly lower than that in other normal cells derived from the breast, lung or liver. Flow cytometry analysis indicated that AP-02-induced G0/G1 cell cycle arrest in COLO 205 cells but not in HT 29 cells (< 5 μM for 24 h, **p < 0.01). Tumor growth volume was also significantly inhibited in AP-02 (> 1 mg/kg)-treated athymic nude mice bearing COLO 205 tumor xenografts compared to control mice (*p < 0.05). Furthermore, G0/G1 phase regulatory proteins (p53 and p21/Cip1) and an invasion suppressor protein (E-cadherin) were significantly upregulated, while cyclin D1 was significantly downregulated, in AP-02-treated tumor tissues compared to the control group (> 1 mg/kg, *p < 0.05).

Conclusions: Our results provide in vitro and in vivo molecular evidence of AP-02-induced anti-proliferative effects on colon cancer, indicating that this compound might have potential clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660667PMC
http://dx.doi.org/10.1186/s12906-019-2590-9DOI Listing

Publication Analysis

Top Keywords

colo 205
28
cell cycle
16
cycle arrest
16
apiole derivatives
12
g0/g1 cell
12
derivatives ap-02
8
induction g0/g1
8
205 cancer
8
cancer cells
8
colon cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!