Drivers and ecological consequences of dominance in periurban phytoplankton communities using networks approaches.

Water Res

UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France. Electronic address:

Published: October 2019

Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton communities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosystems. This is of particular concern in densely populated urban areas where usages and impacts of human populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the structure and functioning of these communities. Here, we studied the causes and consequences of phytoplankton dominance in 50 environmentally contrasted waterbodies, sampled over four summer campaigns in the highly-populated Île-de-France region (IDF). Phytoplankton dominance was observed in 32-52% of the communities and most cases were attributed to Chlorophyta (35.5-40.6% of cases) and Cyanobacteria (30.3-36.5%). The best predictors of dominance were identified using multinomial logistic regression and included waterbody features (surface, depth and connection to the hydrological network) and water column characteristics (total N, TN:TP ratio, water temperature and stratification). The consequences of dominance were dependent on the identity of the dominant organisms and included modifications of biological attributes (richness, cohesion) and functioning (biomass, RUE) of phytoplankton communities. We constructed co-occurrence networks using high resolution phytoplankton biomass and demonstrated that networks under dominance by Chlorophyta and Cyanobacteria exhibited significantly different structure compared with networks without dominance. Furthermore, dominance by Cyanobacteria was associated with more profound network modifications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger disruption of the structure and functioning of phytoplankton communities in the conditions in which this group dominates. Finally, we provide a synthesis on the relationships between environmental drivers, dominance status, community attributes and network structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.114893DOI Listing

Publication Analysis

Top Keywords

phytoplankton communities
20
consequences dominance
12
dominance
11
phytoplankton
8
drivers dominance
8
structure functioning
8
phytoplankton dominance
8
networks dominance
8
communities
7
consequences
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!