Mitophagy is an evolutionarily conserved cellular process which selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Dysregulated mitophagy results in the accumulation of damaged mitochondria, which plays an important role in carcinogenesis and tumor progression. The role of mitophagy receptors and adaptors including PINK1, Parkin, BNIP3, BNIP3L/NIX, and p62/SQSTM1, and the signaling pathways that govern mitophagy are impaired in cancer. Furthermore, the contribution of mitophagy in regulating the metabolic switch may establish a balance between aerobic glycolysis and oxidative phosphorylation for cancer cell survival. Moreover, ROS-driven mitophagy achieves different goals depending on the stage of tumorigenesis. Mitophagy promotes plasticity in the cancer stem cell through the metabolic reconfiguration for better adaption to the tumor microenvironment. In addition, the present review sheds some light on the role of mitophagy in stemness and differentiation during the transition of cell's fate, which could have a crucial role in cancer progression and metastasis. In conclusion, this review deals with the detailed molecular mechanisms underlying mitophagy, along with highlighting the dual role of mitophagy in different aspects of cancer, suggesting it as a possible target in the mitophagy-modulated cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2019.07.015DOI Listing

Publication Analysis

Top Keywords

role mitophagy
16
mitophagy
11
cancer
8
role
6
emerging multifaceted
4
multifaceted role
4
mitophagy cancer
4
cancer cancer
4
cancer therapeutics
4
therapeutics mitophagy
4

Similar Publications

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.

Pharmaceuticals (Basel)

January 2025

Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.

View Article and Find Full Text PDF

A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer.

Int J Mol Sci

January 2025

Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus.

Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of , , , , , , and , across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes.

View Article and Find Full Text PDF

Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 Macrophage polarization in bladder cancer.

Int Immunopharmacol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China. Electronic address:

Background: Bladder cancer (BCa), particularly muscle-invasive bladder cancer (MIBC), is associated with poor prognosis, partly because of immune evasion driven by M2 tumor-associated macrophages (TAMs). Understanding the regulatory mechanisms of M2 macrophage polarization via PRKN-mediated mitophagy and histone lactylation (H3K18la) is crucial for improving treatment strategies.

Methods: A single-cell atlas from 46 human BCa samples was constructed to identify macrophage subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!