Light is a key limiting factor of plant growth and development under the canopy. Specific light signals, such as a low ratio of red : far-red (R:FR) light, trigger the shade avoidance response, which affects hypocotyl, stem, and leaf growth. Although multiple components mediating shade avoidance responses have been identified in the past few decades, the underlying regulatory mechanism remains unclear. In this study, we found that the far-red elongated hypocotyls 3 (fhy3) mutant exhibited longer hypocotyls and increased expression levels of core shade avoidance response genes under low R:FR shade conditions compared with the wild type No-0, suggesting that FHY3 negatively regulates shade avoidance responses. Yeast one-hybrid, chromatin immunoprecipitation, and RT-qPCR assays revealed that FHY3 directly binds to the promoters and gene body of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 and activates their expression to inhibit shade responses. Furthermore, the overexpression of PAR1 or PAR2 rescued the enhanced shade avoidance responses of fhy3, indicating that both genes are direct downstream targets of FHY3 that mediate shade avoidance responses. Our findings demonstrate that the light-signalling protein FHY3 positively regulates the transcription of PAR1 and PAR2, which encode two key negative regulators of shade avoidance responses, thus repressing plant responses to shade signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13630 | DOI Listing |
Biosens Bioelectron
December 2024
Biophotonic Nanosensors Laboratory, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, 76230, Mexico. Electronic address:
Smartphone-based colorimetric (bio)sensing is a promising alternative to conventional detection equipment for on-site testing, but it is often limited by sensitivity to lighting conditions. These issues are usually avoided using housings with fixed light sources, increasing the cost and complexity of the on-site test, where simplicity, portability, and affordability are a priority. In this study, we demonstrate that careful optimization of color space can significantly boost the performance of smartphone-based colorimetric sensing, enabling housing-free, illumination-invariant detection.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Supplementation with far-red light in controlled environment agriculture production can enhance yield by triggering the shade avoidance syndrome. However, the effectiveness of this yield enhancement can be further improved through intermittent far-red light supplementation. In this study, the effects are explored of varying far-red light photon intensities and intermittent exposure durations-specifically at 5, 15, 30, and 45 min intervals-on the growth and development of lettuce () in plant factories, while maintaining a constant red light photon flux and daily light integral.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.
View Article and Find Full Text PDFAnn Bot
December 2024
Université de Montpellier, INRAE, UMR LEPSE, 2 Place Viala 34060 Montpellier, France.
Backgrounds And Aims: Shading, water deficit, and crop load shape plant development in a very plastic way. They directly influence the plant's carbon supply and demand to and from the different organs via metabolic, hydraulic and hormonal mechanisms. However, how the multiple environmental factors combine through these mechanisms and how they interplay with carbon status, vegetative and reproductive development and carbon assimilation of the plant needs to be investigated in the context of current climatic and technological constraints.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Soybean Biology (Beijing) (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Under low blue light (LBL) conditions, soybean exhibits classic shade avoidance syndrome (SAS) with exaggerated stem elongation (ESE), leading to lodging and yield reduction in dense farming. Recently, mRNA modification by N6-methyladenosine (m6A) has emerged as a crucial epigenetic mechanism regulating plant biological processes; however, its impact on shade avoidance remains unexplored. In this study, the double mutants, gmmtas, that are impaired in two mA writer genes, GmMTAa and GmMTAb that encode mA methyltransferases or mA writers are generated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!