Butanol has advantages over ethanol as a biofuel. Although butanol is naturally produced by some Clostridium species, clostridial fermentation has inherent characteristics that prevent its industrial application. Butanol-producing Saccharomyces cerevisiae strains may be a solution to this problem. The aim of this study was to evaluate the ability of wild-type and industrial Brazilian strains of S. cerevisiae to produce n-butanol using glycine as co-substrate and evaluate the relationship between the production of this alcohol and other metabolites in fermented broth. Of the 48 strains analyzed, 25 were able to produce n-butanol in a glycine-containing medium. Strains exhibited different profiles of n-butanol, isobutanol, ethanol, glycerol and acetic acid production. Some wild-type strains showed substantial n-butanol production capability, for instance UFMG-CM-Y267, which produced about 12.7 mg/L of butanol. Although this concentration is low, it demonstrates that wild-type S. cerevisiae can synthesize butanol, suggesting that selection and genetic modification of this microorganism could yield promising results. The findings presented here may prove useful for future studies aimed at optimizing S. cerevisiae strains for butanol production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnz164 | DOI Listing |
Bioresour Bioprocess
January 2025
CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
Background: There is an urgent need to develop bioprocesses independent of fossil resources to address resource depletion and mitigate environmental harm. Transitioning to a bio-based economy requires prioritizing chemical production processes that utilize renewable resources, ensuring sustainability and environmental responsibility. 5-Hydroxymethylfurfural (HMF) and its derivatives are promising building blocks, ranked among the top 12 bio-based molecules derived from biomass.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
The aromatic compound β-phenylethanol (2-PE) is inherently toxic and can inhibit cell activity in Saccharomyces cerevisiae, making it highly challenging to enhance strain tolerance through rational design due to the lack of reliable connections between tolerance phenotype and genetic loci. This study employed adaptive laboratory evolution strategy to investigate the tolerance characteristics of S. cerevisiae S288C under inhibitory concentrations of 2-PE.
View Article and Find Full Text PDFEnviron Microbiol
February 2025
Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal.
Wine industry has faced pressure to innovate its products. Saccharomyces cerevisiae has been the traditional yeast for producing alcoholic beverages, but interest has shifted from the conventional S. cerevisiae to non-Saccharomyces yeasts for their biotechnological potential.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!