RNA biology is orchestrated by the dynamic interactions of RNAs and RNA-binding proteins (RBPs). In the present study, we describe a new method of proximity-dependent protein labeling to detect RNA-protein interactions [RNA-bound protein proximity labeling (RBPL)]. We selected the well-studied RNA-binding protein PUF to examine the current proximity labeling enzymes birA* and APEX2. A new version of birA*, BASU, was used to validate that the PUF protein binds its RNA motif. We further optimized the RBPL labeling system using an inducible expression system. The RBPL (λN-BASU) labeling experiments exhibited high signal-to-noise ratios. We subsequently determined that RBPL (λN-BASU) is more suitable than RBPL (λN-APEX2) for the detection of RNA-protein interactions in live cells. Interestingly, our results also reveal that proximity labeling is probably capable of biotinylating proximate nascent peptide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823345PMC
http://dx.doi.org/10.1002/2211-5463.12706DOI Listing

Publication Analysis

Top Keywords

proximity labeling
16
rna-protein interactions
12
labeling detect
8
detect rna-protein
8
interactions live
8
live cells
8
rbpl λn-basu
8
labeling
6
proximity
4
interactions
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface.

Cancers (Basel)

January 2025

Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.

Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions.

View Article and Find Full Text PDF

Proximity Labeling-Based Identification of MGAT3 Substrates and Revelation of the Tumor-Suppressive Role of Bisecting GlcNAc in Breast Cancer via GLA Degradation.

Cells

January 2025

Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China.

Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods.

View Article and Find Full Text PDF

Multi-modal investigation reveals pathogenic features of diverse DDX3X missense mutations.

PLoS Genet

January 2025

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America.

De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!