A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EEG electrode selection for person identification thru a genetic-algorithm method. | LitMetric

EEG electrode selection for person identification thru a genetic-algorithm method.

J Med Syst

Department of Computer and Information Technology, Faculty of Engineering, Razi University, Kermanshah, Iran.

Published: July 2019

New biometric identification techniques are continually being developed to meet various applications. Electroencephalography (EEG) signals may provide a reasonable option for this type of identification due its unique features that overcome the lacks of other common methods. Currently, however, the processing load for such signals requires considerable time and labor. New methods and algorithms have attempted to reduce EEG processing time, including a reduction of the number of electrodes and segmenting the EEG data into its typical frequency bands. This work complements other efforts by proposing a genetic algorithm to reduce the number of necessary electrodes for measurements by EEG devices. Using a public EEG dataset of 109 subjects who underwent relaxation with eye-open and eye-closed stimuli, we aimed to determine the minimum set of electrodes required for optimum identification accuracy in each EEG sub-band of both stimuli. The results were encouraging and it was possible to accurately identify a subject using about 10 out of 64 electrodes. Moreover, higher frequency bands required a fewer number of electrodes for identification compared with lower frequency bands.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-019-1364-8DOI Listing

Publication Analysis

Top Keywords

number electrodes
12
frequency bands
12
eeg
7
identification
5
electrodes
5
eeg electrode
4
electrode selection
4
selection person
4
person identification
4
identification genetic-algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!