Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in , , and mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in populations. was also detected in several of the field samples ( and spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the , , and genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas. Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752009PMC
http://dx.doi.org/10.1128/AEM.01202-19DOI Listing

Publication Analysis

Top Keywords

microbial detection
8
detection array
8
mosquito-borne viruses
4
viruses insect-specific
4
insect-specific viruses
4
viruses revealed
4
revealed field-collected
4
field-collected mosquitoes
4
mosquitoes monitoring
4
monitoring tool
4

Similar Publications

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Background: Intracranial aneurysms (IAs) are a significant clinical concern, with detection rates increasing due to advances in imaging technologies. However, precise mechanisms underlying their pathophysiology remain incompletely understood. Recent evidence suggests a pivotal role of oral microbiota dysbiosis, particularly periodontal pathogens, in systemic inflammation that may contribute to IA development and rupture.

View Article and Find Full Text PDF

Evaluation of Intestinal Permeability Using Serum Biomarkers in Learning Early About Peanut Allergy Trial.

Allergy

January 2025

Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA.

Background: Intestinal barrier dysfunction may lead to a break in tolerance and development of food allergy (FA). There is contradictory evidence on whether intestinal permeability (IP) is altered in IgE-mediated FA. Thus, we sought to determine whether IP differed between children with eczema who did (FA group) or did not (atopic controls, ACs) develop FA and whether peanut sensitization, allergy, and early introduction impacted IP using serum biomarkers zonulin, soluble CD14, and Intestinal Fatty Acid Binding Protein among randomly selected participants enrolled in the Learning Early About Peanut allergy trial.

View Article and Find Full Text PDF

Multidimensional morphological analysis of live sperm based on multiple-target tracking.

Comput Struct Biotechnol J

December 2024

Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.

Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly contribute to the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the head target detection frame IOU value, into the cost function of the Hungarian matching algorithm.

View Article and Find Full Text PDF

This study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!