Spinal cord injury (SCI) is a devastating disease inflicting lifetime disability to the victims. Military personnel are quite often victims of SCI for which no suitable therapeutic strategies have been developed so far. The main reason for SCI induced disability is loss of neural connections below and above the lesion site causing motor paralysis and somatosensory disturbances Loss of neuronal connections thwart spinal cord conduction resulting in motor function disability. To enhance spinal cord conduction grafting of peripheral nerves, implant of hydrogels filled with neuroprotective drugs is used but so far, no satisfactory results re achieved. In this regards implants of microelectrode for enhancing tissue connectivity is suggested that is still under experimental state. We have used titanium implant with or without TiO nanowires in a focal spinal cord injury and studies spinal cord pathology and motor function. In addition, we also combined with nanowired delivery of a potential neuroprotective drug DL-3-n-butylphthalide (DL-NBP) to the spinal cord in a rat model. Our observations show that a combination of titanium implant with nanowired delivery of DL-NBP induces superior neuroprotection and enhance motor functions after SCI. This treatment also restored blood-spinal cord barrier (BSCB) function and reduces edema formation and cell injury after SCI, not reports earlier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.irn.2019.06.009DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
cord conduction
12
cord injury
12
cord
10
focal spinal
8
blood-spinal cord
8
cord barrier
8
edema formation
8
injury sci
8
motor function
8

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

Study Design: Registry-based cohort study.

Objectives: To evaluate the impact of the introduction of a new bladder management model of care at the Victorian Spinal Cord Service (VSCS) on the incidence of subsequent emergency department presentations and readmissions to hospital for urinary tract infection (UTI) in the first 2 years after injury.

Setting: VSCS, Austin Health, Melbourne, Australia.

View Article and Find Full Text PDF

Integrated bioinformatics analysis identified cuproptosis-related hub gene Mpeg1 as potential biomarker in spinal cord injury.

Sci Rep

January 2025

Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.

Spinal cord injury (SCI) is a profound ailment lacking a well-defined molecular mechanism and effective treatments. Cuproptosis, identified as a recently discovered cell death pathway, exhibits diverse roles in various cancers. Nevertheless, its involvement in SCI is yet to be elucidated.

View Article and Find Full Text PDF

Machine learning analysis of cervical balance in early-onset scoliosis post-growing rod surgery: a case-control study.

Sci Rep

January 2025

Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.

We aimed to analyze the cervical sagittal alignment change following the growing rod treatment in early-onset scoliosis (EOS) and identify the risk factors of sagittal cervical imbalance after growing-rod surgery of machine learning. EOS patients from our centre between 2007 and 2019 were retrospectively reviewed. Radiographic parameters include the cervical lordosis (CL), T1 slope, C2-C7 sagittal vertical axis (C2-7 SVA), primary curve Cobb angle, thoracic kyphosis (TK), C7-S1 sagittal vertical axis (C7-S1 SVA) and proximal junctional angle (PJA) were evaluated preoperatively, postoperatively and at the final follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!