Bradykinin is a mediator of vasogenic brain edema formation. Recent reports suggest that bradykinin interacts with nitric oxide synthase (NOS) system in the central nervous system (CNS). However, role of bradykinin in spinal cord injury (SCI) induced alterations in the blood-spinal cord barrier (BSCB), spinal cord blood flow (SCBF), edema formation and cell changes are still not well known. Our previous reports showed that SCI induces marked upregulation of neuronal NOS (nNOS) in the cord associated with BSCB disruption, edema formation and cell injury. Thus, a possibility exists that bradykinin participates in SCI induced nNOS upregulation and cord pathology. To explore this idea a potent bradykinin B2 receptor antagonist HOE-140 was used in our rat model of SCI and cord pathology. SCI was inflicted in Equithesin anesthetized rats by making a longitudinal incision (2mm deep and 5mm long) into the right dorsal horn of the T10-11 segment. The animals were allowed to survive 5h after injury. A focal SCI significantly disrupted BSCB to Evans blue and I-sodium in the traumatized and adjacent segments. Interestingly, far remote spinal cord segments C4 and T5 segments also affected within 5h. These spinal cord segments also exhibited pronounced reductions in the SCBF (mean-30%), increased edematous swelling and profound neuronal damages. Upregulation of nNOS expression is seen in both the dorsal and ventral horns of the spinal cord exhibiting cord pathology. At the ultrastructural level, exudation of lanthanum is seen within the endothelial cell cytoplasm and occasionally in the basal lamina. Pretreatment with low doses of HOE-140 (0. 1mg to 1mg/kg, i.v.) 30min prior to SCI significantly enhanced the SCBF and reduced the BSCB disruption, edema formation, nNOS upregulation and cell injury. However, HOE-140 in doses ranging from 2mg to 5mg/kg, i.v. did not induce significant neuroprotection. These observations are the first to suggest that bradykinin B2 receptors play an important role in BSCB permeability, SCBF, edema formation, nNOS upregulation and cell injury following acute SCI, not reported earlier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.irn.2019.06.008DOI Listing

Publication Analysis

Top Keywords

edema formation
24
spinal cord
24
cell injury
16
formation cell
12
nnos upregulation
12
cord pathology
12
cord
11
potent bradykinin
8
bradykinin receptor
8
receptor antagonist
8

Similar Publications

Metabolomics approach to evaluate diclazuril-induced developmental toxicity in zebrafish embryo.

Aquat Toxicol

January 2025

Analytical Chemistry Laboratory, ASSIST Group, Main campus, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow India. Electronic address:

Anticoccidials, commonly used in veterinary medicine to treat coccidiosis in food-producing animals, particularly in poultry farming, are associated with potential environmental risks due to their excretion in manure and subsequent land-spreading. Diclazuril, a widely used anticoccidial, has been detected in groundwater, raising concerns about its impact on non-target species. This study investigates the developmental toxicity of diclazuril in zebrafish embryos over a 96-hour exposure period, utilizing biomarkers such as oxidative stress indicators and metabolomic profiles.

View Article and Find Full Text PDF

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Previous studies have confirmed that burns and scalds can lead to metabolic disorders in the liver. However, the effects of severe burns at various time points on liver lipid metabolism disorders, as well as the relationship between these disorders and liver function, metabolism, and infection, have not yet been investigated.This study established a SD rat scald model, macroscopic observation of weight changes, histological staining, Western blot detection of fat browning and metabolic indicators, reverse transcription quantitative polymerase chain reaction analysis of the expression of liver new fat generation genes, determination of liver function and inflammatory indicators.

View Article and Find Full Text PDF

Aims: The aim of this study was to develop an ultra-short echo time 3D magnetic resonance imaging (MRI) method for imaging subacute myocardial infarction (MI) quantitatively and in an accelerated way. Here, we present novel 3D T- and T -weighted Multi-Band SWeep Imaging with Fourier Transform and Compressed Sensing (MB-SWIFT-CS) imaging of subacute MI in mice hearts .

Methods And Results: Relaxation time-weighted and under-sampled 3D MB-SWIFT-CS MRI were tested with manganese chloride (MnCl) phantom and mice MI model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!