The reconstruction of viscous properties of soft tissues, and more specifically, of cervical tissue is a challenging problem. In this paper, a new method is proposed to reconstruct the viscoelastic parameters of cervical tissue-mimicking phantoms by a Torsional Wave Elastography (TWE) technique. The reconstruction method, based on a Probabilistic Inverse Problem (PIP) approach, is presented and experimentally validated against Shear Wave Elastography (SWE). The anatomy of the cervical tissue has been mimicked by means of a two-layer gelatine phantom that simulates the epithelial and connective layers. Five ad hoc oil-in-gelatine phantoms were fabricated at different proportion to test the new reconstruction technique. The PIP approach was used for reconstructing the Kelvin-Voigt (KV) viscoelastic parameters by comparing the measurements obtained from the TWE technique with the synthetic signals from a Finite Difference Time Domain (FDTD) KV wave propagation model. Additionally, SWE tests were realized in order to characterize the viscoelastic properties of each batch of gelatine. Finally, validation was carried out by comparing the KV parameters inferred from the PIP with those reconstructed from the shear wave dispersion curve obtained from the SWE measurements. In order to test the degree of agreement between both techniques, a Student's T-test and a Pearson's correlation study were performed. The results indicate that the proposed method is able to reconstruct the KV viscoelastic properties of the cervical tissue, for both the epithelial and connective layers, as well as the thickness of the first layer with acceptable accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696340PMC
http://dx.doi.org/10.3390/s19153281DOI Listing

Publication Analysis

Top Keywords

wave elastography
12
cervical tissue
12
cervical tissue-mimicking
8
tissue-mimicking phantoms
8
phantoms torsional
8
torsional wave
8
reconstruct viscoelastic
8
viscoelastic parameters
8
twe technique
8
pip approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!