In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration.

Mater Sci Eng C Mater Biol Appl

Department of Regenerative Medicine, College of Medicine, Soonchunhyang University 366-1, Ssangyong-dong, Cheonan-City, ChungCheongNam-Do 330-090, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University 366-1, Ssangyong-dong, Cheonan-City, ChungCheongNam-Do 330-090, South Korea. Electronic address:

Published: October 2019

Bioglass-calcium phosphate cement (CPC) composite materials have recently received increased attention for bone regeneration purposes, owing to their improved properties in term of biocompatibility and bone ingrowths. In this study, an injectable bone substitute (IBS) system which utilizes bioglass microspheres incorporated into brushite based cement, was evaluated. The microspheres were synthesized with a simple and low sintering temperature process; there was no significant phase difference shown from the powder and good interactivity with cells was obtained. Furthermore, physical properties were optimized in microsphere incorporated brushite cement in order to investigate in vitro and in vivo performance. Accordingly, setting time and compressive strength were hardly altered until a microsphere content of 40% (v/v) was reached. The brushite (BR)/bioglass microsphere (BM) system showed excellent bioactivity to the in-vitro simulated body fluid test: dissolution ions from composite materials influenced apatite growth, countered acidic pH, and increased material degradation. In an in-vitro study with preosteoblasts (MC3T3-E1), BR/BM supported cell adhesion and proliferation, while cell differentiation experiments without osteogenic supplements, demonstrated that BR/BM induced osteogenic differentiation. A post-implantation study conducted in femoral defects showed higher materials degradation and bone formation in BR/BM than in BR. The faster dissolution of bioglass microspheres increased BR/BM composite resorption and hence facilitated bone tissue integration. Our findings suggest that bioglass microspheres incorporated in cement could potentially be used as an injectable bone substitute for bone regeneration applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.109775DOI Listing

Publication Analysis

Top Keywords

bioglass microspheres
16
microspheres incorporated
12
incorporated brushite
12
bone regeneration
12
vitro vivo
8
brushite cement
8
bone
8
composite materials
8
injectable bone
8
bone substitute
8

Similar Publications

Spinal cord injury (SCI) is a common nerve injury caused by external force, resulting in sensory and motor impairments. Previous studies demonstrated that inhibiting the neuroinflammation promoted SCI repair. However, these approaches are low efficient, and lack targeting specificity, and even require repeated and high doses of systemic administration.

View Article and Find Full Text PDF

Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized.

View Article and Find Full Text PDF

Quercetin-Loaded Bioglass Injectable Hydrogel Promotes m6A Alteration of Per1 to Alleviate Oxidative Stress for Periodontal Bone Defects.

Adv Sci (Weinh)

August 2024

Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China.

Periodontal disease ranks third among noncommunicable illnesses, behind cancer and cardiovascular disease, and is closely related to the occurrence and progression of various systemic diseases. However, elucidating the processes of periodontal disease and promoting periodontal bone regeneration remains a challenge. Here, quercetin is demonstrated to reduce the oxidative stress state of orofacial mesenchymal stem cells (OMSCs) in vitro and to affect the osteogenic growth of OMSCs through molecular mechanisms that mediate the m6A change in Per1.

View Article and Find Full Text PDF

Artificial bone graft with osteoconductivity, angiogenesis, and immunomodulation is promising clinical therapeutics for the reluctant healing process of bone defects. Among various osteogenic substitutes, polymethyl methacrylate (PMMA) bone cement is a quit competitive platform due to its easy deployment to the bone defects with irregular shape and biomimetic mechanical properties. However, the biologically inert essence of PMMA is reliant on the passive osseointegration and cannot provide sufficient biologic cues to induce fast bone repair.

View Article and Find Full Text PDF

Rotator cuff tears are a prevalent musculoskeletal problem that affect many individuals and may result in substantial social and health-related expenses. Moreover, the muscular fat infiltration and dystrophy associated with rotator cuff tears have been persistent challenges in rotator cuff surgical repair and postoperative rehabilitation. In this study, an in situ-formed injectable sodium alginate (SA) and bioglass (BG) hydrogel consisting of poly (lactic-co-glycolic acid) (PLGA) microspheres containing metformin (SA/BG-PLGA-Met) was developed for the prevention of muscular fat infiltration and dystrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!