Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity.

Mater Sci Eng C Mater Biol Appl

Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada. Electronic address:

Published: October 2019

AI Article Synopsis

Article Abstract

Porous composite hydrogels were prepared using glycol chitosan as the matrix, glyoxal as the chemical crosslinker, and carbon nanotubes (CNTs) as the fibers. Both carboxylic and hydroxylic functionalized CNTs were used. The homogeneity of CNTs dispersion was evaluated using scanning electron microscopy. Human vocal fold fibroblasts were cultured and encapsulated in the composite hydrogels with different CNT concentrations to quantify cell viability. Rheological tests were performed to determine the gelation time and the storage modulus as a function of CNT concentration. The gelation time tended to decrease for low concentrations and increase at higher concentrations, reaching a local minimum value. The storage modulus obeyed different trends depending on the functional group. The porosity of the hydrogels was found to increase by 120% when higher concentrations of carboxylic CNTs were used. A high porosity may promote cell adhesion, migration, and recruitment from the surrounding native tissue, which will be investigated in a future work aiming at applying this injectable biomaterial for vocal fold tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662640PMC
http://dx.doi.org/10.1016/j.msec.2019.109861DOI Listing

Publication Analysis

Top Keywords

composite hydrogels
12
vocal fold
12
fold tissue
8
gelation time
8
storage modulus
8
higher concentrations
8
carbon nanotube
4
nanotube composite
4
hydrogels
4
hydrogels vocal
4

Similar Publications

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix.

View Article and Find Full Text PDF

Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.

View Article and Find Full Text PDF

Intrauterine adhesion (IUA) is an endometrial damage repair disorder that leads to menstrual loss, amenorrhea, and infertility in women; therefore, addressing this dilemma is a critical challenge. In this study, a multifunctional hydrogel, comprising oxidized sodium alginate (OSA), strontium carbonate (SrCO), and betamethasone 21-phosphate sodium (BSP), was formulated to facilitate angiogenesis, reduce fibrosis, and support tissue repair in the treatment of IUA. The composite hydrogels showed significant bioactivity on human endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), promoting the injured HESCs repair, reversing the degree of fibrosis to a certain extent, and enhancing the proliferation and migration of HUVECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!