A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biocompatibility and biodegradability of filler encapsulated chloroacetated natural rubber/polyvinyl alcohol nanofiber for wound dressing. | LitMetric

The novel biodegradable films of chloroacetated natural rubber/polyvinyl alcohol (CNR/PVA) (55/45 wt%) non-woven nanofiber films encapsulated with kaolin and starch (2.5 and 5 wt%) were produced successfully by green electrospinning technique. The effect of fillers with different content on the physical, chemical, mechanical, biocompatibility and biodegradation properties of CNR/PVA nanofiber films were investigated. The higher crystallinity obtained in CNR/PVA encapsulate with 2.5 wt% kaolin and nanofibers were formed with the maximum diameter distribution and mean value of 40-160 nm and 94.15 ± 54.19 nm respectively. DSC and DMA revealed the kaolin can improve the interfacial adhesion between CNR and PVA and contribute to enhancing the chemical interactions. The mechanical properties improved upon encapsulation of starch and kaolin and more favourable nanofibers with smaller diameter obtained using kaolin rather than starch. The cytotoxicity results revealed the viability of the prepared nanofiber films with human dermal fibroblast cell. Furthermore, the incorporation of starch and kaolin accelerated the degradation rate and the highest enzymatic degradation obtained with 2.5 wt% of starch. The prepared nanofiber films have the potential to be applied for the skin tissue engineering scaffold applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.109829DOI Listing

Publication Analysis

Top Keywords

nanofiber films
16
chloroacetated natural
8
natural rubber/polyvinyl
8
rubber/polyvinyl alcohol
8
kaolin starch
8
starch kaolin
8
prepared nanofiber
8
kaolin
6
nanofiber
5
films
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!