Promoter region of protein-coding genes are gradually being well understood, yet no comparable studies exist for the promoter of long non-coding RNA (lncRNA) genes which has emerged as a global potential regulator in multiple cellular process and different diseases for human. To understand the difference in the transcriptional regulation pattern of these genes, previously, we proposed a machine learning based model to classify the promoter of protein-coding genes and lncRNA genes. In this study, we are presenting DeepCNPP (deep coding non-coding promoter predictor), an improved model based on deep learning (DL) framework to classify the promoter of lncRNA genes and protein-coding genes. We used convolution neural network (CNN) based deep network to classify the promoter of these two broad categories of human genes. Our computational model, built upon the sequence information only, was able to classify these two groups of promoters from human at a rate of 83.34% accuracy and outperformed the existing model. Further analysis and interpretation of the output from DeepCNPP architecture will enable us to understand the difference in transcription regulatory pattern for these two groups of genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI190061 | DOI Listing |
NAR Genom Bioinform
March 2025
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Evaluating the accuracy of protein-coding sequences in genome annotations is a challenging problem for which there is no broadly applicable solution. In this manuscript, we introduce PSAURON (Protein Sequence Assessment Using a Reference ORF Network), a novel software tool developed to help assess the quality of protein-coding gene annotations. Utilizing a machine learning model trained on a diverse dataset from over 1000 plant and animal genomes, PSAURON assigns a score to coding DNA or protein sequence that reflects the likelihood that the sequence is a genuine protein-coding region.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFMol Hortic
January 2025
Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!