This study describes the design of a flexible narrowband organic photodiode (OPDs) with a novel structure. A bulk heterojunction of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C70-butyric acid methyl ester (PCBM) is introduced as a photoactive layer, with an optimized thickness of 160 nm, and a MoO/Ag/MoO (MAM) multilayer electrode and polyimide (PI) film substrate were used. The OPD with the device architecture of PI/MAM/P3HT:PCBM/Al showed narrowband photodiode performance in the 500-650 nm wavelength range. The maximum external quantum efficiency (EQE) of the OPD was 15.41% at 570 nm, which dropped to ∼0% outside the operation wavelength range. This narrowband detectivity originated from the cutoff of light at wavelengths below 500 nm by the PI substrate and photoreactivity of P3HT:PCBM at wavelengths between 300 and 650 nm. Outer bending tests performed over 1000 cycles revealed that the average maximum EQE remained at ∼15%. The maximum responsivity of the OPD was calculated to be 0.07 A W at 570 nm. The OPD device showed a narrow response spectrum with a full width at half maximum of 100 nm. This research suggests a new approach for the fabrication of flexible OPDs with high selectivity in color detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab35ff | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.
The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China.
The halide postdeposition treatment technique is a widely used strategy for mitigating defects in perovskite. However, when applied to mixed-halide perovskites, it often leads to surface and internal halide heterogeneity, which compromises luminescence performance and spectral stability. In this work, blue mixed-halide 3D perovskites are engineered with acetate (Ac⁻)-rich surfaces to optimize the post-treatment process and achieve halide homogeneity.
View Article and Find Full Text PDFSci Rep
November 2024
GUST Engineering and Applied Innovation Research Center (GEAR), Gulf University for Science and Technology, Mishref, Kuwait.
This paper introduces a compact, triband four-port Multiple Input Multiple Output (MIMO) antenna optimized for mmWave 5G and navigation services. The antenna is built on a Rogers RT Duroid 5880 substrate, with dimensions of 31 × 42 mm² and a thickness of 0.4 mm.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
The discovery of multiple resonance thermally activated delayed fluorescence (MR-TADF) materials with remarkable narrowband emission has opened a new avenue for the development of organic light-emitting diodes (OLEDs) with high color purity. However, the lack of construction strategies for purely red MR-TADF materials significantly impedes their application in full-color high-definition displays. Herein, we propose a unique and handy approach of spiro-carbon-locking and sulfur-embedding strategy to modify the parent MR-TADF framework, resulting in a red MR-TADF emitter with high color purity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!