Salinity modifies heavy metals and arsenic absorption by the halophyte plant species Kosteletzkya pentacarpos and pollutant leaching from a polycontaminated substrate.

Ecotoxicol Environ Saf

Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium. Electronic address:

Published: October 2019

Phytomanagement of polycontaminated soils is challenging, especially in areas simultaneously affected by salinity. The wetland halophyte plant species Kosteletzkya pentacarpos was cultivated in a column device allowing leachate harvest, on a polycontaminated spiked soil containing Cd (6.5 mg kg DW), As (75 mg kg DW), Zn (200 mg kg DW) and Pb (300 mg kg DW) and irrigated with salt water (final soil electrical conductivity 5.0 ms cm). Salinity increased Cd bioavailability in the soil and Cd accumulation in the shoots while it had an opposite effect on As. Salinity did not modify Pb and Zn bioavailability and accumulation. Cultivating plants on the polluted soil drastically reduced the volume of leachate. In all cases, salinity reduced the total amounts of heavy metals removed by the leachate and significantly increased the proportion of Cd and Zn removed by the plants. Heavy metal contamination induced a decrease in shoot dry weight and an increase in malondialdehyde (an indicator of oxidative stress); both symptoms were alleviated by the additional presence of NaCl but this positive impact was not related to increase in protecting phytochelatins synthesis. It is concluded i) that bioavailability estimated by the 0.01M CaCl extraction procedure is not fully relevant from the heavy metal mobility, ii) that salinity decreased heavy metal percolation, especially in soils cultivated with K. pentacarpos and iii) that salinity improves plant tolerance to heavy metals in K. pentacarpos and that this species is a promising plant material for phytoremediation of polycontaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109460DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
heavy metal
12
halophyte plant
8
plant species
8
species kosteletzkya
8
kosteletzkya pentacarpos
8
polycontaminated soils
8
salinity
7
heavy
6
salinity modifies
4

Similar Publications

Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.

View Article and Find Full Text PDF

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.

View Article and Find Full Text PDF

This study was conducted to evaluate the health risks related to eating crabs and periwinkles from Southern Nigerian coastal areas that are contaminated by crude oil. Periwinkles and crabs from contaminated locations were tested for Polycyclic aromatic hydrocarbon (PAH) and heavy metal (HM) levels using US-EPA standard, and the health risks to humans of eating these seafood were assessed. 20 samples of periwinkles and crabs were collected from crude oil-polluted coastal areas.

View Article and Find Full Text PDF

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!