Copper ion vs copper metal-organic framework catalyzed NO release from bioavailable S-Nitrosoglutathione en route to biomedical applications: Direct H NMR monitoring in water allowing identification of the distinct, true reaction stoichiometries and thiol dependencies.

J Inorg Biochem

Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States; Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States. Electronic address:

Published: October 2019

Copper containing compounds catalyze decomposition of S-Nitrosoglutathione (GSNO) in the presence of glutathione (GSH) yielding glutathione disulfide (GSSG) and nitric oxide (NO). Extended NO generation from an endogenous source is medically desirable to achieve vasodilation, reduction in biofilms on medical devices, and antibacterial activity. Homogeneous and heterogeneous copper species catalyze release of NO from endogenous GSNO. One heterogeneous catalyst used for GSNO decomposition in blood plasma is the metal-organic framework (MOF), H[(CuCl)-(BTTri), HBTTri = 1,3,5-tris(H-1,2,3-triazol-5-yl) benzene] (CuBTTri). Fundamental questions about these systems remain unanswered, despite their use in biomedical applications, in part because no method previously existed for simultaneous tracking of [GSNO], [GSH], and [GSSG] in water. Tracking these reactions in water is a necessary step towards study in biological media (blood is approximately 80% water) where NO release systems must operate. Even the balanced stoichiometry remains unknown for copper-ion and CuBTTri catalyzed GSNO decomposition. Herein, we report a direct H NMR method which: simultaneously monitors [GSNO], [GSH], and [GSSG] in water; provides the experimentally determined stoichiometry for copper-ion vs CuBTTri catalyzed GSNO decomposition; reveals that the CuBTTri-catalyzed reaction reaches 10% GSNO decomposition (16 h) without added GSH, yet the copper-ion catalyzed reaction reaches 100% GSNO decomposition (16 h) without added GSH; and shows 100% GSNO decomposition upon addition of stoichiometric GSH to the CuBTTri catalyzed reaction. These observations provide evidence that copper-ion and CuBTTri catalyzed GSNO decomposition in water operate through different reaction mechanisms, the details of which can now be probed by H NMR kinetics and other needed studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110760DOI Listing

Publication Analysis

Top Keywords

gsno decomposition
28
cubttri catalyzed
16
copper-ion cubttri
12
catalyzed gsno
12
gsno
9
metal-organic framework
8
biomedical applications
8
direct nmr
8
decomposition
8
[gsno] [gsh]
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!