Cell-free protein synthesis has emerged as a promising platform for the production of therapeutic proteins due to its inherently open reaction environment, flexible reaction conditions and rapid protein synthesis capabilities. In recent years, lyophilized cell-free systems have widened the application space of cell-free technology by improving reagent stability outside of cold-chain storage. Current embodiments of the system, however, demonstrate poor stability at elevated temperatures. Lyoprotectants have long been recognized for the ability to preserve the activity of biological molecules during drying processes, but the application of this technology to lyophilized cell-free systems has been limited and has failed to address the negative effects that such lyoprotectants may have on cell-free systems. Here, several lyoprotected, lyophilized cell-free protein synthesis systems are demonstrated using antiplasticized sugar glasses as lyoprotectants, showing significant improvement over standard lyophilized systems or trehalose-preserved systems. Furthermore, we demonstrate for the first time, preservation and therapeutic expression, specifically of FDA-approved crisantaspase, from a truly single-pot lyophilized, endotoxin-free, cell-free protein synthesis system, exemplifying the potential for on-site therapeutic synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2019.07.004 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFBone
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling.
View Article and Find Full Text PDFJ Nutr
December 2024
Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
Background: Plant-based foods have reduced protein digestibility and frequently display unbalanced amino acid profiles. Plant-based foods are therefore considered inferior to animal-based foods in their anabolic potential. No study has assessed the anabolic potential of a vegan diet that provides a large variety of plant-based protein sources in older adults.
View Article and Find Full Text PDFFerredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.
View Article and Find Full Text PDFDev Biol
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!