Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Absolute and relative dispersion are fundamental quantities employed in order to assess the mixing strength of a basin. There exists a time scale called Lagrangian Integral Scale associated to absolute dispersion that highlights the occurrence of the transition from a quadratic dependence on time to a linear dependence on time. Such a time scale is commonly adopted as an indicator of the duration needed to lose the influence of the initial conditions. This work aims to show that in a semi-enclosed basin the choice of the formulation in order to calculate the absolute dispersion can lead to different results. Moreover, the influence of initial conditions can persist beyond the Lagrangian Integral Scale. Such an influence can be appreciated by evaluating absolute and relative dispersion recursively by changing the initial conditions. Furthermore, finite-size Lyapunov exponents characterize the different regimes of the basin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660070 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217073 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!