Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells.

Adv Healthc Mater

Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.

Published: September 2019

Despite advances in microsurgical techniques, treatment options to restore prior function following peripheral nerve injury remain unavailable, and autologous nerve grafting remains the therapy of choice. Recent experimental work has focused on the development of artificial constructs incorporating smart biomaterials and stem cells, aspiring to match/improve the outcomes of nerve autografting. Chemically stimulated human adipose-derived stem cells (dhASC) can improve nerve regeneration outcomes; however, these properties are lost when chemical stimulation is withdrawn, and survival rate upon transplantation is low. It is hypothesized that interactions with synthetic hydrogel matrices could maintain and improve neurotrophic characteristics of dhASC. dhASC are cultured on PeptiGel-Alpha 1 and PeptiGel-Alpha 2 self-assembling peptide hydrogels, showing comparable viability to collagen I control gels. Culturing dhASC on Alpha 1 and Alpha 2 substrates allow the maintenance of neurotrophic features, such as the expression of growth factors and neuroglial markers. Both Alpha 1 and Alpha 2 substrates are suitable for the culture of peripheral sensory neurons, permitting sprouting of neuronal extensions without the need of biological extracellular matrices, and preserving neuronal function. PeptiGel substrates loaded with hdASC are proposed as promising candidates for the development of tissue engineering therapies for the repair of peripheral nerve injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201900410DOI Listing

Publication Analysis

Top Keywords

stem cells
12
self-assembling peptide
8
hydrogel matrices
8
improve neurotrophic
8
human adipose-derived
8
adipose-derived stem
8
peripheral nerve
8
alpha alpha
8
alpha substrates
8
nerve
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!