Gold Nanoparticles Thin Films with Thermo- and Photoresponsive Plasmonic Properties Realized with Liquid-Crystalline Ligands.

Small

Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland.

Published: September 2019

Robust synthesis of large-scale self-assembled nanostructures with long-range organization and a prominent response to external stimuli is critical to their application in functional plasmonics. Here, the first example of a material made of liquid crystalline nanoparticles which exhibits UV-light responsive surface plasmon resonance in a condensed state is presented. To obtain the material, metal cores are grafted with two types of organic ligands. A promesogenic derivative softens the system and induces rich liquid crystal phase polymorphism. Second, an azobenzene derivative endows nanoparticles with photoresponsive properties. It is shown that nanoparticles covered with a mixture of these ligands assemble into long-range ordered structures which exhibit a novel dual-responsivity. The structure and plasmonic properties of the assemblies can be controlled by a change in temperature as well as by UV-light irradiation. These results present an efficient way to obtain bulk quantities of self-assembled nanostructured materials with stability that is unattainable by alternative methods such as matrix-assisted or DNA-mediated organization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201902807DOI Listing

Publication Analysis

Top Keywords

plasmonic properties
8
gold nanoparticles
4
nanoparticles thin
4
thin films
4
films thermo-
4
thermo- photoresponsive
4
photoresponsive plasmonic
4
properties realized
4
realized liquid-crystalline
4
liquid-crystalline ligands
4

Similar Publications

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

We consider a half-filled Chern band and its transport properties in two phases that it may form: the electronic Fermi liquid and the composite-fermion Fermi liquid. For weak disorder, we show that the Hall resistivity for the former phase is very small, while for the latter it is close to 2h/e^{2}, independent of the distribution of the Berry curvature in the band. At rising temperature and high frequency, we expect the Hall resistivity of the electronic phase to rise, and that of the composite-fermion phase to deviate from 2h/e^{2}.

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!